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Abstract

This study investigates the application of computational construction grammars to se-
mantic frame extraction (SFE) and semantic role labeling (SRL) in natural language
processing. It provides an evaluation framework for large-scale construction gram-
mars, combining the assessment of different simulations of sentence comprehension
in the context of an SRL task. The study evaluates these grammars, which em-
ploy different configurations of heuristics - shortcuts or “rules of thumb” that guide
how the grammar processes and understands language. Just as humans use various
strategies to comprehend sentences quickly, these computational heuristics help the
grammar efficiently apply constructions to extract meaning from an utterance. The
focus lies on testing linguistically motivated heuristics, including (1) a preference for
constructions that occur more often in language use, (2) a bias towards relating nearby
elements in a sentence, and (3) a strategy that considers the strength of associations
between different constructions in the linguistic network. The analysis reveals that
different heuristics perform better in processing different semantic frames, highlight-
ing the importance of well-designed heuristics. Notably, the heuristic that leverages
the interconnectedness of constructions demonstrated superior overall performance,
particularly on frames with high support, such as those with communication, cogni-
tion, and perception verbs. This suggests that considering how linguistic elements
relate to each other in a broader network is crucial for accurate processing, especially
in commonly occurring frames. The heuristic favoring local relationships showed ef-
fectiveness in frames involving expressions of desire, necessity, intention, and actions
requiring immediate relationships between agents and actions. In contrast, relying
solely on how frequently a construction occurs showed subpar performance across
most frames compared to the other examined methods. These findings, derived
from the application of the evaluation framework, contribute to the further devel-
opment and operationalization of large-scale computational construction grammars,
particularly in optimizing heuristic selection based on semantic frame properties.
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1 Introduction

Since the mid-1970s, the concept of “frames” has served as a valuable tool for un-
derstanding how language represents situations and events. This idea originated in
various fields, including sociology (Goffman 1974), artificial intelligence (AI) (Minsky
1974), and linguistics (Fillmore 1976). Within linguistics, Fillmore’s frame semantics
emerged as a key method for analyzing how language represents events and situations.
This theory posits that specific words or phrases evoke mental images, defining the
roles and interactions among participants in a scenario. Therefore, understanding
the meaning of a word requires knowledge of the entire context it relates to (Fill-
more 2006; Boas 2021). For instance, comprehending “sell” necessitates familiarity
with the commercial transfer context involving semantic roles (i.e., frame elements)
like seller, buyer, goods, money, and their interrelations. By structuring these evoked
frames, and specifying the event and participant roles, frame semantics, offers insights
into how language encodes situational knowledge.

Leveraging this understanding of frames, tasks like semantic frame extraction (SFE)
and semantic role labeling (SRL) emerged in natural language processing (NLP) to
automatically extract and comprehend meaning from text. While SFE pinpoints
the underlying event or situation being described and the participants involved, SRL
identifies the roles played by different constituents within a sentence (e.g., who did
what to whom) (Màrquez et al. 2008; Jurafsky and Martin 2020, 2:373). These tasks
are crucial for natural language understanding (NLU), a broader field dedicated to
developing systems that can understand natural language (Surdeanu et al. 2007).

Among various approaches to these tasks, Construction Grammar (CxG) offers a
promising theoretical background to tackle SRL and SFE. Unlike traditional machine
learning approaches that rely primarily on distributional semantics (He et al. 2018b;
Mickus et al. 2019), CxG views language as a collection of constructions or form-
meaning pairings (Fillmore, Kay, and O’Connor 1988; Kay 1990; Goldberg 1995;
Croft 2001). By identifying the constructions used in a sentence, it is possible to infer
the frame and participant roles, offering a transparent and linguistically motivated
approach (Beuls, Van Eecke, and Cangalovic 2021). This makes large-scale, broad-
coverage computational construction grammars possibly advantageous, as they have
the potential to provide a deeper understanding of textual data compared to models
based on distributional semantics.

This study evaluates how effectively CxG can be applied to identify semantic roles
and frames within English sentences. It does this by analyzing the performance of
computational construction grammars on a predefined task, namely SFE. A “con-
struction grammar” is to be understood as a structured collection of form-meaning
pairs (=constructions) that can be used to comprehend or formulate language (van
Trijp, Beuls, and Van Eecke 2022). The study utilizes Fluid Construction Grammar1

(FCG) (Steels 2011, 2017; Beuls and Van Eecke 2023) for formalizing and imple-
menting the constructions. FCG is a computational framework that not only enables
the semantic parsing of linguistic utterances through constructions but also provides
the capability to learn grammars from semantically annotated corpora. This learned

1 https://www.fcg-net.org/
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grammar can then be applied for semantic parsing tasks, such as SFE, demonstrat-
ing FCG’s versatility in both grammar learning and application. Therefore, the main
goals of this study are to conduct an in-depth internal assessment of this methodology,
to exemplify how CxG can be operationalized on a large scale through learning from
annotated data, and to provide a systematic framework for evaluating construction
grammar performance on a predefined semantic parsing task. Crucially, it focuses
on the role of heuristics in this process. In this context, heuristics are computational
shortcuts or “rules of thumb” that guide how the grammar processes and understands
language. The study examines linguistically motivated heuristics, including a prefer-
ence for frequently occurring constructions based on usage-based theories of language
(Bybee 2006), local dependencies within sentences drawing from psycholinguistic re-
search on sentence processing (Gibson 2000), and strengths in network connection
between constructions aligning with cognitive linguistic theories (Diessel 2019, 2023).
By evaluating the effectiveness of different heuristics in computational construction
grammars through this framework, this study aims to offer insights that could inform
both linguistic theory and constructional approaches to language processing, particu-
larly in the context of learning and applying grammars for semantic parsing tasks.

AI’s interest in studying language is not a new development. It could be argued that
at the most fundamental level, the ability to communicate through language is a criti-
cal component of human intellect and, thus, a prerequisite for achieving the goal of AI
to gain a similar range of abilities as humans (Russell and Norvig 2021, 823–24). One
of the main challenges for AI to reach the ability to understand natural language is
that it cannot be accomplished without necessary contextual knowledge and reasoning
(Eisenstein 2019, 3–4). Although it appears to be an entirely different research field,
Cognitive Linguistics and its extension, Cognitive Construction Grammar (CogCxG)
(Goldberg 1995, 2006; Croft and Cruse 2004; Geeraerts 2006), share a common un-
derstanding with AI. Both fields agree that to interpret or generate natural language
expressions, knowledge about the world is necessary, as the meaning of an expression
depends on the situation in which it is uttered. In recent years, there has been a resur-
gent interest in unifying these disciplines, particularly in the field of Computational
Construction Grammar (CCxG) (Beuls and van Trijp 2016; Nevens, Van Eecke, and
Beuls 2019; Van Eecke and Beuls 2018; van Trijp 2017; Bergen and Chang 2005;
Barres 2017; Beuls and Van Eecke 2024). This study contributes to this alignment
by evaluating the effectiveness of computational construction grammars, a bridge be-
tween the two fields, in extracting semantic roles and frames from English sentences.
Each grammar is configured with various learning and comprehension settings are
analyzed. Performance is assessed on multiple levels, from overall to frame-specific
effectiveness.

The resources and code used in this study can be found in the study’s repository2.
It is meant to supplement the main body of text and serves mainly as a technical
documentation of the evaluation process. It contains all the code used to evaluate
the frame predictions of large-scale construction grammars. The source code of the
grammars themselves is publicly available through the Babel toolkit3.

2 https://github.com/TomMoeras/evaluating-large-scale-construction-grammar-2024
3 https://emergent-languages.org/
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This introduction is followed by the “Background” section, which provides the nec-
essary background to the SRL and SFE task and the CCxG approach to this task.
The “Methodology” section details the learning and comprehension processes of var-
ious grammars and how they are evaluated. The “Results” section breaks down the
grammars’ performance in macro- and frame-level evaluations, providing a thorough
understanding of their effectiveness. The “Discussion” section interprets these find-
ings in the context of ongoing construction grammar development, setting the stage
for future research avenues. Finally, the “Conclusion” section summarizes the study’s
main findings and their implications.

To ensure this study remains accessible, the explanation of how the computational
construction grammars were implemented and learned will be provided in a gen-
eral, conceptual manner. For those seeking further details on their internal structure
and processes, additional information, and explanations have been included in the
appendix (A).

2 Background

This study is anchored in the domains of Frame Semantics, Construction Grammar
(CxG), Semantic Role Labeling (SRL), and Semantic Frame Extraction (SFE). The
section begins by detailing Frame Semantics and its resources, setting the foundation
for understanding the problem space. It then highlights the linguistic motivations
behind the approach, focusing on CxG and its relationship with Frame Semantics.
Following this, the tasks of SRL and SFE are explained, along with commonly used
methods. Finally, the section outlines the chosen approach, encompassing Computa-
tional Construction Grammar (CCxG) and its implementation within the Fluid Con-
struction Grammar (FCG) framework.

2.1 Frame Semantics

Frame Semantics emphasizes the bond between form and meaning through semantic
frames (Fillmore 2006; Boas 2021). These frames organize knowledge about word
meanings, where understanding one concept implies grasping its broader context. For
instance, the verb “to cook” can evoke an entire cooking scenario, simplifying it into a
semantic frame. Within this frame, parts of the scene, termed frame elements, reflect
cognitive comprehension of the experience. In language, these elements translate to
semantic roles, defining the functions of entities in the described situation.

However, a semantic frame’s representation in language is not always straightfor-
ward. A word can evoke multiple frames, underscoring the context-dependent nature
of Frame Semantics. van Trijp (2024) outlines four mapping processes for expressing
and understanding semantic frames:

1. Associating a situation with its relevant semantic frame.
2. Aligning frame elements with semantic roles.
3. Mapping semantic roles to grammatical functions.
4. Expressing these functions in specific linguistic choices.
Two major resources for frame semantics are PropBank (Palmer, Gildea, and Kings-
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bury 2005) and FrameNet (Ruppenhofer et al. 2006). PropBank, built upon the
syntactic annotations of the Penn Treebank, provides a layer of semantic annotation
that details verbs’ roles and their associated arguments in the text. Each PropBank
verb has numbered arguments (e.g., Arg0, Arg1) with specific semantic roles. On
the other hand, FrameNet provides a more extensive inventory of semantic frames,
covering a wide range of situations and concepts beyond just verbal predicates.

2.2 Construction Grammar

CxG views language as a collection of constructions or form-meaning pairings. It
challenges traditional linguistic boundaries, treating all linguistic elements uniformly.
While CxG has multiple theoretical offshoots, this short explanation focuses solely on
aspects pertinent to the current study. For a broader understanding of CxG and its
variations, works by Hoffmann (2022), Ungerer and Hartmann (2023), and van Trijp
(2024) offer a comprehensive overview. The basic tenets of CxG are as follows:

• Constructions as Linguistic Knowledge: The foremost principle is that all lin-
guistic knowledge can be expressed as constructions, or form-meaning pair-
ings (Croft 2001; Croft and Cruse 2004; Fillmore 1985; Fillmore, Kay, and
O’Connor 1988; Goldberg 1995; Kay 1990). These constructions freely inter-
act to facilitate language comprehension and production, barring any conflicts.

• Lexicon-Grammar Continuum: CxG blurs the traditional boundaries between
“words” and “grammar rules”, treating all linguistic elements uniformly (Fill-
more, Kay, and O’Connor 1988).

• Dynamic Nature: A notable aspect of (usage-based) CxG is its dynamic na-
ture. Constructions are not innately available but are instead formed during
communicative interactions. As they find success or failure in communication,
constructions become more or less entrenched, enabling the grammar to repre-
sent individual linguistic knowledge rather than an idealized language user (Van
Eecke and Beuls 2018).

• Structured Inventory: Lastly, CxG views an inventory of constructions as a
structured entity rather than an unorganized list. It conceptualizes the con-
structions of a language as a structured collection, which can be depicted in the
form of a network (Hoffmann 2017; Diessel 2019, 2023).

Understanding the essence of a “construction” in CxG is crucial for applying this
linguistic theory. The discussions by Haspelmath (2023) and van Trijp (2024) con-
tribute to this understanding. In this study, drawing from these discussions, a con-
struction is understood to be a conventional schema for creating expressions, with at
least one open slot that expressions from the same form-class can fill. This defini-
tion aligns with the view of constructions as recurrent, partially fixed patterns within
a language, where certain elements are set while others allow for variability. Thus, in
this study, a construction is considered a structure or template that guides the forma-
tion of linguistic units and is not an expression in itself. By extension, a construction
grammar is a structured collection of constructions used to comprehend or formulate
language.

The synergy between CxG and Frame Semantics is evident. Constructions, as
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form-meaning pairs, often evoke specific frames. This means that the meaning of a
construction can be understood in terms of the frame it activates. Conversely, frames
can be seen as providing the semantic backdrop against which constructions play out.
For instance, a construction like “X sells Y to Z for W” evokes the “Commercial
Transaction” frame, where X is the seller, Y is the item being sold, Z is the buyer,
and W is the price. The construction lays out a specific morpho-syntactic pattern for
expressing this frame.

2.3 Semantic Role Labeling and Semantic Frame Extraction

The task at hand is the prediction of PropBank roles and frames from English sen-
tences. This labeling of semantic roles decodes sentences to answer questions like
“Who is doing what to whom, when, where, and how?” (Jurafsky and Martin 2020,
2:373–74).

SRL is the task of identifying the predicates in a sentence and labeling the semantic
relationships between these predicates and their associated arguments. For example,
in the sentence “Jane sold her old car for $5000”, SRL would identify “sold” as the
predicate, “Jane” as the seller (Arg0), “her old car” as the item sold (Arg1), and “for
$5000” as the price (Arg2). SFE is rooted in SRL principles. It identifies a word
or phrase’s semantic frame and categorizes the roles of other sentence elements in
relation to this frame. For instance, in the sentence “Jane sold her old car for $5000,”
the verb “sold” triggers the “Commercial Transaction” frame, indicating roles such
as the seller (“Jane”), the item sold (“her old car”), and the price (“$5000”). Using
this approach, SRL systems detect frame-evoking elements and align other sentence
elements with the frame’s designated roles. The aim goes beyond identifying individ-
ual actions, striving to understand the overarching event conveyed by the sentence.
Resources like FrameNet and PropBank facilitate this extraction with their extensive
frame and role inventories.

To illustrate the typical SRL process (Pradhan et al. 2005; He et al. 2018a; Li et
al. 2019) with PropBank annotations, consider the sentence “Jane sold her old car for
$5000”:

1. Predicate Identification: Predicate: “sold”
2. Predicate Sense Disambiguation: Predicate Sense: sell.01, “Transferred own-

ership in exchange for money.”
3. Argument Identification: “Jane”, “her old car”, “for $5000”
4. Argument Classification: Classified Arguments: “Jane” (Arg0: Seller/Agent),

“her old car” (Arg1: Item Sold/Theme), “for $5000” (Arg2: Price)
While the organization and formalization of semantic frames, including FrameNet’s

frames and PropBank’s rolesets, on a large scale have been carried out with success,
the automated extraction of these frames and rolesets from text presents a significant
challenge (Beuls, Van Eecke, and Cangalovic 2021).
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2.4 Approaches to SRL and SFE

Various approaches have been developed for SRL and SFE tasks. These methods
generally rely on large-scale data analysis and statistical patterns rather than on explicit
linguistic structures or theories of language. Commonly used methods include:

1. Feature-based models: These models use hand-crafted features derived from
linguistic analysis (e.g., part-of-speech tags, dependency parse trees) to train ma-
chine learning classifiers (Pradhan et al. 2005). While these features are based
on linguistic knowledge, the models themselves do not explicitly represent or
reason about linguistic structures. Instead, they treat these features as statistical
indicators for classification tasks.

2. Neural network-based models: Recent approaches leverage deep learning tech-
niques, particularly transformer-based models like BERT, to learn representa-
tions of words and sentences for SRL and SFE tasks (Shi and Lin 2019). These
models rely on vast amounts of data to learn patterns and relationships with-
out incorporating explicit linguistic knowledge or structures. They operate on
the principle that meaning can be derived from the distributional properties of
words in large corpora rather than from predefined linguistic constructs.

3. Joint models: These approaches perform SRL along with other NLP tasks, such
as syntactic parsing, aiming to leverage the interactions between different levels
of linguistic analysis (He et al. 2018a). While these models acknowledge the in-
terplay between different linguistic levels, they typically do not model language
as a structured inventory of form-meaning pairings. Instead, they treat these
interactions as statistical dependencies that can be learned from data.

These approaches have shown considerable success in SRL and SFE tasks, achiev-
ing high performance on standard benchmarks. For instance, the AllenNLP model,
based on the BERT architecture, has achieved a test F1 score of 86.49 on the Onto-
Notes 5.0 dataset for English PropBank SRL (Gardner et al. 2017). However, these
methods have certain limitations. They typically require large amounts of annotated
data for training, which can be costly and time-consuming to produce. Moreover,
their reliance on statistical patterns means they may struggle with rare or novel lin-
guistic constructions not well-represented in their training data. The internal workings
of these models, mainly neural network-based ones, can also be difficult to interpret,
making it challenging to understand why they make specific predictions or how they
represent linguistic knowledge.

This study focuses on a different approach: Computational Construction Grammar
(CCxG). Unlike the above methods, CCxG aims to model language processing more
closely to how humans might understand and produce language, providing a more
transparent and interpretable model of language processing.

2.5 The Approach: Computational Construction Grammar

The approach adopted for the task of predicting PropBank frames is grounded in
the principles of CCxG, particularly through the utilization of the Fluid Construction
Grammar (FCG) framework (Steels 2011, 2017; Beuls and Van Eecke 2023, 2024).
CCxG is an ambitious attempt to translate the foundational tenets of linguistic Con-
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struction Grammar into computational models. These models are designed to system-
atically capture linguistic knowledge, thus enabling the efficient processing of natural
language input in a way that aligns with theoretical linguistic principles. A standout
example of CCxG is FCG (Steels 2017). FCG presents a structured methodology for
embedding construction grammars within a computational environment. Its capabili-
ties span both the comprehension and production of language based on constructional
principles.

FCG forms the foundation for the construction grammars analyzed in this study.
The central question FCG engages with is: how can constructions be utilized to com-
prehend or formulate language computationally? In this context, comprehension
refers to translating a natural language expression into a representation of its meaning,
whereas formulation or production denotes the reverse process, turning a semantic
representation into a natural language utterance (Van Eecke, Nevens, and Beuls 2022).

For constructions to facilitate comprehension or formulation, FCG treats language
processing akin to a problem-solving task, an approach drawn from the field of AI
(Russell and Norvig 2021, 63–104). Consider the example of solving a puzzle. The
task is straightforward, namely, finding a path that leads to a completed puzzle. The
problem-solver begins with an initial state (e.g., a jumbled puzzle), performs actions
or operations (e.g., moving and rotating pieces), and aims to reach a desired goal state
(e.g., a completed puzzle).

In FCG’s context, these problem-solving elements manifest as transient structures
and constructions. Transient structures serve as the state representation (i.e., a jum-
bled puzzle). They are mutable, temporary configurations that evolve during language
processing. Constructions, on the other hand, are akin to operators (i.e., actions that
change the state of the jumbled puzzle). They are applied to the transient structure,
effecting changes and driving the progression from the initial state towards the goal.

In FCG, language processing can thus be characterized as starting with an initial
transient structure and sequentially applying a series of constructions to resolve a lan-
guage comprehension or formulation problem. The role of the FCG engine is to de-
termine a pathway from the initial transient structure to the final transient structure, a
path that effectively leads to successful language comprehension or formulation. The
system utilizes various strategies to identify this pathway, with heuristics being the
most pertinent for this study. These heuristics guide the process, providing cues on
which construction to apply next or which direction to take in the search tree explo-
ration (Van Eecke 2018; Van Eecke, Nevens, and Beuls 2022). These strategies can
be diverse and might be rooted in various linguistic indicators. For example, a heuris-
tic might prioritize constructions that match more units in the transient structure or
prefer constructions that are more frequently observed in the language data. Several
heuristics will be individually assessed during the evaluation process to ascertain which
one delivers the most effective results.

In computational applications, combining the insights from both CxG and Frame
Semantics can provide a powerful tool for natural language understanding. Construc-
tions offer a systematic way to represent and parse linguistic structures, while frames
provide the semantic depth to comprehend and formulate meaningful content.
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Figure 1: Evaluation Process of the Construction Grammars

3 Methodology

To analyze and evaluate the performance of the grammars, each with its unique learn-
ing and comprehension configurations, were examined. The evaluation process (Fig-
ure 1) comprises three main steps. Initially, grammars are learned by implementing
a range of learning configurations. Subsequently, these grammars are utilized to com-
prehend and extract semantic frames from sentences, employing various heuristics.
Lastly, the predictions obtained are assessed on different levels using multiple perfor-
mance metrics.

The subsequent sections will delve deeper into each of these stages, with a predom-
inant focus on the evaluation process, aligning with the study’s main objectives.

3.1 Learning and Comprehension Process

The foundation for the large-scale construction grammars examined in this study
lies in their learning process. This process involves acquiring knowledge about lin-
guistic structures and developing an interconnected system that can subsequently be
used for comprehension. The learning process for a PropBank construction gram-
mar involves acquiring linguistic structures and developing a system for comprehen-
sion. In this study, PropBank annotations taken from the OntoNotes 5.0 corpus
(Weischedel et al. 2013) are used as the primary data source, and the grammars un-
dergo a structured learning process, extracting three primary types of constructions:
Argument Structure Constructions, Word Sense Constructions, and Lexical Construc-
tions. These constructions form the construction inventory. Constructions serve as
mappings between form and meaning, with form represented by syntactic tree struc-
tures and meaning by semantic roles. Lexical Constructions identify specific verb
forms; Word Sense Constructions specify the context or sense in which these verb
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forms are used; and Argument Structure Constructions map from a syntactic struc-
ture (form) to semantic roles (meaning) that are realized at specific places in the tree,
establishing a direct link between the structure of a sentence and its semantic roles.
Alongside the construction inventory, the learning process also develops a categorial
network. This network represents the categories that are learned and their relation-
ships. The constructions in the inventory make use of the categories in the categorial
network during the comprehension process. Following comprehension, frames are
extracted to provide a structured meaning representation of the depicted situations or
events.

To maintain the focus of this discussion on the evaluation, the precise methodolo-
gies employed in the learning and operationalization of these grammars, as well as
specific examples of these constructions are not elaborated upon here. However, for
those interested in delving deeper into these processes, detailed explanations and in-
sights are provided in the appendix. This additional information offers an overview
of the underlying mechanisms that enable the grammars to effectively learn and apply
linguistic knowledge.

The study employed a range of learning and comprehension settings, detailed in Ta-
ble 1. Learning settings define what the grammar needs to learn, and comprehension
settings guide the application of these learned constructions to get to a meaning rep-
resentation. All explanations here are kept to a conceptual level to ensure readability,
with additional details provided in the appendix.

This study aimed to investigate the effects of three key heuristics on grammar per-
formance: (1) Frequency-Based Priority, (2) Network Connection Strength, and
(3) Local Dependency Preference (collectively referred to as the H1 group). These
heuristics were selected based on their potential to capture different aspects of lan-
guage processing and construction grammar theory.

• The Frequency-Based Priority heuristic is grounded in usage-based theories of
language acquisition and processing (Bybee 2006). It reflects the hypothesis that
more frequently encountered linguistic patterns play a crucial role in language
comprehension and production.

• The Network Connection Strength heuristic aligns with the conceptualization
of constructions as part of a structured network, as proposed in cognitive lin-
guistic theories (Hoffmann 2017; Diessel 2019, 2023). This heuristic reflects
the interconnected nature of constructions in the grammar and the importance
of these connections in language processing.

• The Local Dependency Preference heuristic draws from psycholinguistic re-
search on sentence processing, particularly the idea of locality effects in language
comprehension (Gibson 2000). It was chosen to test the importance of local
dependencies in sentence comprehension within the framework of construction
grammar.

The study implemented various learning configurations to examine the impact of
these H1 heuristics. These configurations served two primary purposes:

1. By altering what the grammar needs to capture, these configurations fundamen-
tally change the internal structure of the construction inventory and its associ-
ated network of relationships. This allows for an investigation into how such
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Table 1: This table provides an overview of the learning and comprehension configurations used in the
study. The ‘Group’ column indicates the group to which each configuration setting belongs. ‘L’ denotes
Learning Configurations, and ‘H’ denotes Heuristics or comprehension configurations. The number
following ‘L’ or ‘H’ represents the group number. ‘0’ indicates that the setting is always constant.
Numbers ‘1’ and ‘2’ denote mutually exclusive groups. For instance, in the Learning Config group
‘L1’, if one setting is activated, the other is turned off.

Learning Configurations
Configuration Group Description
Core Roles L0 Includes Arg0-1-2-3-4-5. Always included.
Modifier Group In-
clusion

L1 Includes modifiers as defined by Palmer et al.
(2005).

Modifier Group Ex-
clusion

L1 Excludes modifiers from the learning process.

Full Roleset Inclu-
sion

L2 No rolesets are excluded.

Frequent Multi-
Sense Roleset
Exclusion

L2 Excludes certain rolesets from the grammar’s
learning process, such as different word senses
of the verbs “be”, “have” and “get”.
Heuristics

Heuristic Group Description
Frequency-Based
Priority

H1 Prioritizes frequently encountered construc-
tions. This heuristic is based on the assump-
tion that the constructions encountered more
often in the data are more likely to be accurate
or relevant.

Network Connection
Strength

H1 Focuses on the strength of connections between
constructions.

Local Dependency
Preference

H1 Prioritizes connections between elements
closer together in the sentence.

structural changes affect the grammar’s overall performance and the efficacy of
the H1 heuristics.

2. The inclusion or exclusion of specific elements enables an assessment of how
well the heuristics perform in comprehending these particular components within
sentences. This approach facilitates a direct comparison between grammars that
include or exclude certain elements, providing insights into the heuristics’ effec-
tiveness across different linguistic contexts.

Two primary learning modes were employed: Core Roles and Modifier Group.
The Core Roles mode focused on basic argument roles (Arg0-1-2-3-4-5). In con-
trast, the ModifierGroup included additional modifiers such as temporal or locational
information as defined in Palmer, Gildea, and Kingsbury (2005). Furthermore, the
study introduced roleset categories: Frequent Multi-Sense Roleset Exclusion and
Full Roleset Inclusion. The Frequent Multi-Sense Roleset Exclusion learning con-
figuration primarily focuses on auxiliary verbs and frequently occurring verbs with
multiple senses. This includes different word senses of the verbs ’be’, ’have’, ’do’, and
’get’. These verbs were chosen for exclusion for several reasons. They appear in a



12 Evaluating CCxGs for SFE

wide variety of contexts and constructions. Each of these verbs has numerous senses
or uses, ranging from auxiliary functions to main verb uses with distinct meanings.
Due to their frequency and multiple senses, these verbs create a large number of con-
nections within the network. This can significantly increase the complexity of the
network and potentially obscure patterns related to less frequent but semantically rich
verbs. By excluding these frequent multi-sense rolesets, the study aims to simplify
the learning task and potentially improve performance on core verbal predicates.

Conversely, Full Roleset Inclusion provided a more comprehensive learning ap-
proach, incorporating all rolesets, including these frequent multi-sense verbs. This
setting allows for an examination of how including these complex, highly connected
verbs affects the overall performance of the grammar and the efficacy of different
heuristics. The comparison between these two settings enables an assessment of the
trade-offs between comprehensive coverage and focused learning in the context of
construction grammar. It provides insights into how the presence or absence of these
frequent multi-sense verbs impacts the grammar’s ability to capture and utilize con-
structional patterns in language processing.

By structuring the study in this way, the aim was to evaluate the individual perfor-
mance of each heuristic and learning configuration and uncover potential synergies or
conflicts between them. This approach allows insights into how different aspects of
language understanding, from fundamental argument structures to more nuanced lin-
guistic features, interact within the framework of construction grammar. Moreover,
it provides a comprehensive view of how changes in the grammar’s internal struc-
ture and the inclusion or exclusion of specific linguistic elements affect the heuristics’
performance and the grammar’s overall effectiveness.

The grammars were learned using the OntoNotes 5.0 corpus train set (Weischedel
et al. 2013). This corpus can be described as a broad-coverage corpus that spans
several genres, including religious texts, telephone conversations, news articles and
weblogs. The train set, used to learn the grammars, consisted of 123,648 sentences.
Each of these sentences is annotated with a PropBank layer. The grammars acquired
between 38,897 and 82,045 constructions through this learning process, the exact
number varying based on the specific learning configurations employed. To evaluate
the grammars’ performance, a subset of 4,000 sentences (Subdev) was used from the
development set (Dev) of the same corpus (Table 2). This approach allows for iter-
ative grammar refinement based on performance and reduces the risk of overfitting,
keeping the test set (Test) separate for final evaluation.

Random and shuffled sentences were used for evaluation, but future research could
benefit from a more selective approach to curating the sentence selection to focus on
specific aspects of the grammars’ performance.

3.2 Evaluation Process

This section provides an overview of the evaluation criteria applied in assessing the
performance of the grammars and the learning, and comprehension configurations.
These criteria serve as the foundation for comparing the effectiveness of different
grammars and configurations in the context of semantic frame extraction.
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Table 2: Overview of sentences and frames in the corpus.

Dataset #Sentences
(S)

With
Frames

Without
Frames

%
Without

Avg
#Frames/S

Mode
Frames

Train 123,648 107,585 16,063 12.99 3.30 2
Dev 17,058 14,808 2,250 13.19 3.28 2
Subdev 4,000 3,461 539 13.48 3.01 2
Test 13,685 11,531 2,154 15.74 3.22 2
Total 154,391 133,924 20,467 13.26 3.29 2

3.2.1 Metrics

The primary metric used in the evaluation process was the F1 score, which leverages
both precision and recall4 in its computation. The calculation of the F1 score was
done using a function that compared predictions to a gold standard. This function
was adapted to account for specific grammar configurations, ensuring consistency in
the evaluation process:

• Word sense disambiguation was always included, ensuring that the evaluation
considered the specific word senses in the context of the sentences.

• If certain role sets were excluded during the learning process, they were also
excluded from the evaluation process to maintain consistency between learning
and evaluation.

• When the Modifier Group was not learned as part of the grammar configu-
ration, the predictions were evaluated solely on the core roles, allowing for a
more focused assessment of grammar performance concerning these essential
elements.

To illustrate this further, Table 3 presents a comparison between the gold standard
frames and the frames predicted by various grammars for the sentence “Cathryn Rice
could hardly believe her eyes”, focusing on the inclusion/exclusion of the Modifier
Group configuration.

• Gold Standard Frames: Serve as the reference point for evaluating the accuracy
of the grammars’ predictions. These include the primary frame “believe.01”,
with “Cathryn Rice” as the agent, “could” as the modal, “hardly” as the adverb,
“believe” as the verb (Frame-Evoking Element, FEE), and “her eyes” as the
theme.

• Grammar Predictions:
– Grammar 1 (all roles): This grammar scores an F1 of 1, indicating a per-

fect match with the gold standard for all roles. This showcases its effective
learning and prediction ability across the full range of roles.

4 For the sentence “Cathryn Rice could hardly believe her eyes”, precision (P) measures the accuracy
of the grammar’s predictions against the gold standard (e.g., identifying “believe” as the verb,
“Cathryn Rice” as the agent, “her eyes” as the theme), calculated by dividing correct predictions
by total predictions. Recall (R) assesses the grammar’s ability to identify all correct instances as
per the gold standard, calculated by dividing the number of correct grammar predictions by the
gold standard instances. If the grammar perfectly matches the gold standard’s expectations for all
roles, both precision and recall, would be 100%.
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Table 3: Comparison of gold standard and grammar predictions with F1 scores. Purple boxes signify

the gold standard elements, serving as the target for prediction. Green boxes indicate correct predic-

tions aligning with the gold standard. Grey boxes for Grammar 2 signify the absence of predictions

for modifier roles, aligning with its learning constraints and not indicating an error. Red boxes in
Grammar 3 signal inaccuracies in role prediction or classification.

Gold Stan-
dard

Grammar 1
(all roles)

Grammar 2
(core roles)

Grammar 3
(all roles)

Frame believe.01 believe.01 believe.01 believe.01
ARG0
(Agent)

Cathryn Rice Cathryn Rice Cathryn Rice Cathryn Rice

MOD could could ∅ ∅
ADV hardly hardly ∅ ∅
V (FEE) believe believe believe believe
ARG1
(Theme)

her eyes her eyes her eyes her eyes

MNR could
EXT hardly

F1 Score 1 1 0.71

– Grammar 2 (core roles): Similarly scores an F1 of 1. The light grey
boxes for MOD and ADV do not signal shortcomings but define its focus.
Since Grammar 2 was not designed to learn modifier roles, its precision
and recall are to be evaluated within the context of its specific learning
parameters. Its performance is deemed perfect for this sentence, given its
targeted learning scope.

– Grammar 3 (all roles): Shows a divergence from the gold standard, espe-
cially in its treatment of modifier roles, resulting in a reduced F1 score of
0.71. This points to a struggle in fully capturing all the roles as intended,
contrasting with the more accurate performances of Grammars 1 and 2.

By adapting the evaluation process according to the grammar configuration, the
study ensured a fair and accurate assessment of each grammar’s performance in ex-
tracting semantic frames.

3.2.2 Levels of Analysis

To comprehensively evaluate the performance of the construction grammars in ex-
tracting semantic frames, the study employs a multi-layered approach, encompassing
macro and frame levels of analysis.

The macro evaluation provides an overall view of each grammar’s performance
across the entire corpus, moving beyond single sentence analysis to assess efficacy
throughout the dataset. This broad perspective helps to identify the success of each
grammar configuration, and to suggest optimal configurations for future uses.
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At a more detailed level, the frame-level analysis looks at individual semantic frames.
Using VerbAtlas (Di Fabio, Conia, and Navigli 2019), PropBank role sets are grouped
based on shared semantic meanings to provide a clear and structured evaluation. Ver-
bAtlas provides manually labeled mappings that group semantically similar PropBank
role sets, adding depth to the assessment of grammar prediction capabilities. For ex-
ample, the role sets “remain.01”, “stay.01”, and “keep.04” are grouped under the Ver-
bAtlas frame “REMAIN”, which then becomes the focal point for evaluating grammar
performance related to these role sets. A weighted F1 score, adjusted for the support
value of different role sets is used to ensure a balanced evaluation that avoids bias
from variations in role set occurrences in the dataset.

3.2.3 EvaluatingConfigurationSettings: theComposite PerformanceScore (CPS)

The evaluation process centered on comparing performance metrics across various
learning configurations and comprehension heuristics. This involved calculating dif-
ferences between configuration settings’ active and inactive states and deriving a com-
posite score based on these differentials. Aggregation functions like mean, maximum,
and minimum were pivotal in this evaluation. For instance, while the average value
might give a general performance indicator, max and min values show the best and
worst performances, respectively.

Table 4 showcases the grammars’ performance for the frame “REMAIN” with its as-
sociated role sets. The table serves to exemplify the assessment method used through-
out the study rather than presenting final results. This example illustrates how differ-
ent learning configurations and comprehension heuristics affect the F1 score, both in
their active (I) and inactive (O) states. The Composite Performance Score (CPS) is
a synthesized score derived from these difference scores, adjusted by certain weights
and multiplied by 10 for ease of interpretation. Weights were assigned to the mean
(0.5), max (0.7), and min (0.3) aggregation functions to prioritize consistent perfor-
mance, grammar potential, and worst-case scenarios, respectively.

When considering the “REMAIN” frame (Table 4), several key observations can be
made across the learning configurations and heuristics. In the learning configurations,
the L1 group (Modifier Group) shows a significant impact. Modifier Group Exclu-
sion enhances performance with a CPS of +12.5, while Modifier Group Inclusion
has an equally adverse effect with a CPS of -12.5. This suggests that excluding modi-
fiers leads to better performance for the “REMAIN” frame. In the L2 group (Roleset
Inclusion), the impact is less pronounced, with Full Roleset Inclusion slightly improv-
ing performance (CPS: +1.0) and Multi-Sense Roleset Exclusion slightly decreasing
it (CPS: -1.0).

Among the heuristics, the H1 group shows significant variations. The Local De-
pendency Preference heuristic enhances sentence comprehension the most, with the
highest CPS of +17.7. Grammars incorporating this heuristic outperformed others,
showing a mean F1 score improvement of +0.15 and a minimum F1 score improve-
ment of +0.34. The Network Connection Strength heuristic also indicates a positive
impact (CPS: +7.1). However, the Frequency-Based Priority heuristic severely im-
pairs performance with a CPS of -63.6, suggesting it should be disabled for optimal
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Table 4: Composite Performance Scores (CPS) of learning configurations and comprehension heuris-
tics for the VerbAtlas frame ‘REMAIN’ on the first level, (metric F1 score)

Configuration Settings ∆ Mean (I/O) ∆ Max (I/O) ∆ Min (I/O) CPS

Learning Configurations

L1: Modifier Group
Modifier Group Exclusion 0.11 0.10 0.00 +12.5
Modifier Group Inclusion -0.11 -0.10 0.00 -12.5

L2: Roleset Inclusion
Full Roleset Inclusion 0.02 -0.00 -0.00 +1.0
Multi-Sense Roleset
Exclusion

-0.02 0.00 0.00 -1.0

Heuristics

H1
Local Dependency
Preference

0.15 -0.00 0.34 +17.7

Network Connection
Strength

0.09 -0.07 0.25 +7.1

Frequency-Based Priority -0.38 -0.53 -0.25 -63.6

results on the “REMAIN” frame.
The quantitative methodology employed here offered a multi-level evaluation of

the grammars with varied configurations. Through macro- and frame-level evalua-
tions, a holistic understanding of the grammars’ strengths and areas for improvement
emerged, setting the stage for further optimization of the large-scale PropBank con-
struction grammars.

4 Results

This section breaks down the performance of construction grammars into two main
areas: their overall effectiveness across the dataset and their accuracy in predicting
specific semantic frames.

4.1 Macro-Level Evaluation

The performance of all grammars is evaluated based on three key metrics: precision,
recall, and F1 score. Analysis of the performance metrics across all grammars reveals
considerable variation in results. This variability indicates that the effectiveness of
these grammars differs based on their configuration. For example:

• The highest-performing grammar, which excluded multi-sense rolesets and
modifiers during learning and used Network Connection Strength as heuris-
tic, achieved an F1 score of 0.70 (precision: 0.81, recall: 0.61).

• The best-performing grammar that learned all rolesets and modifier roles, us-
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Figure 2: Heat-map of Heuristics and Grammar Configurations. The columns represent different
learning configurations, from all grammars (leftmost) to specific combinations of modifier and frequent
multi-sense roleset inclusion/exclusion. The rows show the performance of individual heuristics (H1
group). Color intensity indicates the magnitude of the CPS, with green representing positive impact
(improvement in F1 score) and red representing negative impact (decrease in F1 score). Numbers in
each cell represent the exact CPS value for that combination of heuristic and grammar configuration.

ing Network Connection Strength as heuristic, obtained an F1 score of 0.59
(precision: 0.66, recall: 0.53).

• In contrast, the lowest-scoring grammar, which learned all rolesets and modifier
roles, employed Frequency-Based Priority as heuristic, achieved an F1 score
of 0.38 (precision: 0.50, recall: 0.30).

It is essential to look into the impact of individual configuration settings on the
performance of these grammars. By investigating the effects of specific settings, a
better understanding of their contributions to the grammars’ F1 scores can be gained.
This can help to identify the most influential settings and possible interactions between
them, ultimately guiding the development of more effective grammars.

The Composite Performance Score (CPS) results are presented in a heat-map (Fig-
ure 2), which provides insights into the effectiveness of these settings in terms of
overall F1 score5. As described in Section 3.2.3, the CPS is a synthesized score that
combines differences in F1 scores between active and inactive states of configuration
settings, weighted to prioritize consistent performance, grammar potential, and worst-
case scenarios.

In Figure 2, the columns represent different learning configurations, ranging from
all grammars (leftmost column) to specific combinations of modifier and multi-sense

5 Significance testing confirmed statistically significant differences (p < 0.05) between all pairs of
key heuristics
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roleset inclusion/exclusion (rightmost columns). The rows show the performance of
individual heuristics from the H1 group. The color intensity in each cell indicates
the magnitude of the CPS, with darker green representing a stronger positive impact
(improvement in F1 score) and darker red representing a stronger negative impact
(decrease in F1 score). The numbers in each cell represent the exact CPS value for
that combination of heuristic and grammar configuration.

Looking at the figure, several key observations can be made:
1. NetworkConnection Strength (H1): This heuristic consistently shows the high-

est positive impact across all configurations, with CPS values ranging from 10.8
to 21.5. It performs particularly well in configurations without modifiers (two
rightmost columns), suggesting it is most effective when dealing with core roles.
The highest CPS value (21.5) is observed for the configuration without modi-
fiers and including all rolesets.

2. LocalDependencyPreference (H1): This heuristic shows variable performance
across configurations. It has a notably positive impact (CPS: 5.9) when mod-
ifiers are included but frequent multi-sense rolesets are excluded (middle col-
umn). However, it shows a slight negative impact (-1.2) in configurations with-
out modifiers and all rolesets included (second from right column), suggesting
that it has difficulties dealing with these frequent multi-sense verbs when mod-
ifiers are absent.

3. Frequency-Based Priority (H1): This heuristic consistently shows the most
substantial negative impact across all configurations, with CPS values ranging
from -21.4 to -32.2. The negative impact is most pronounced (-32.2) in the
configuration without modifiers and excluding multi-sense rolesets (rightmost
column). This suggests that relying heavily on frequency information may lead
to decreased precision and recall, regardless of the learning configuration, and
this effect is exacerbated when dealing with a more restricted set of roles and
rolesets.

These observations highlight the complex interactions between heuristics and gram-
mar configurations. The Network Connection Strength heuristic appears to be the
most robust across different configurations, while the effectiveness of Local Depen-
dency Preference varies depending on the inclusion of modifiers and multi-sense
rolesets. The consistent negative impact of the Frequency-Based Priority heuristic
suggests that this approach may be less suitable for the task at hand, regardless of the
grammar configuration.

4.2 Frame-Level Evaluation

The frame performance analysis is essential to evaluating the grammars’ effectiveness
in handling various PropBank frame rolesets. This analysis utilizes the VerbAtlas
mappings to cluster PropBank frames into semantically related groups. By examining
the performance of the grammars at the frame level, insights are gained into how well
the grammars capture and generalize linguistic patterns within each frame.

The frame performance plot (Figure 5) displays the weighted mean F1 score against
the coefficient of variation (CV) for each frame, with the size of the points representing
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Figure 3: Scatter plot illustrating frame-level performance based on the weighted mean F1 score versus
the coefficient of variation (CV). Point sizes correspond to the support value of each frame. Annotation
added to frames with the highest support values.

the support value. This ensures a balanced representation of the grammars’ perfor-
mance across various frames. The main point of this plot is to provide a general
insight into the grammars’ performance on a frame level. It identifies specific frames
where grammars excel or underperform. Additionally, the analysis can reveal com-
monalities or differences between frames, highlighting areas where grammars may
require additional refinement.

Analyzing frames with high support values is essential for statistical significance
and practical relevance. High support values result in more reliable and statistically
significant results due to a larger sample size. From a practical standpoint, users are
more likely to encounter frames with higher support values in real-world applications.

The plot groups the frames into three categories: best-performing, worst-perform-
ing, and high-variance frames, divided by the CV value with a cut-off point set to 0.7.
The top half of consistently performing frames are labeled as “Consistently Higher
Performing Frames” (e.g., AFFIRM), the bottom half as “Consistently Lower Per-
forming Frames” (e.g., COPULA), and frames with high variability as “High Variance
Frames” (e.g., SPEAK). Colors differentiate these groups, and the top eight frames
with the largest support values are annotated with text labels.

Given the results from the macro evaluation, it is expected that the Frequency-
Based Priority, Network Connection Strength, and Local Dependency Preference
heuristics have a significant influence on the performance of the grammar, especially
on frames with a high support value. This is confirmed by examining the CPS for
the “AFFIRM” frame (Figure 4). As described in the methodology section, the CPS
is a synthesized score derived from the differences in F1 scores between the active
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Figure 4: Plot showing CPS results for frame “AFFIRM” (metric F1). Blue and red bars represent
positive and negative CPS values, respectively. A positive CPS indicates that enabling the specific
configuration resulted in higher F1 scores for this specific frame.

and inactive states of configuration settings. A positive CPS indicates that enabling
a specific configuration resulted in higher F1 scores for this frame, while a negative
CPS suggests that the configuration led to lower F1 scores. The “AFFIRM” frame
has the highest support value. It is described as “An agent AFFIRMS a theme to a
recipient (+attribute)” (Di Fabio, Conia, and Navigli 2019). It is composed of the fol-
lowing PropBank role sets: “say.01,” “claim.01,” “insist.01,” “allege.01,” “confirm.01,”
“assert.03,” and “contend.01”. The role set “say.01” has the highest support value of
109,851, with a mean F1-score of 0.66. Other role sets in this frame have a much
lower support value.

There are positive scores for Network Connection Strength (CPS: 42.9) and Local
Dependency Preference (CPS: 12.6), indicating that the grammars perform better
when one of these heuristics is used. On the other hand, the Frequency-Based Pri-
ority (CPS: -8.48) greatly negatively impacts the grammars’ performance. In other
words, the CPS table for the frame “AFFIRM” aligns with the macro CPS plot, indi-
cating that the performance of the grammars on the “AFFIRM” frame is consistent
with their overall performance. Interestingly, the learning configurations did not im-
pact the grammars’ performance on the “AFFIRM” frame.

To examine the frame performance more thoroughly, this study analyzed the spe-
cific CPS for grammars using these heuristics to determine which heuristics perform
best on which frames (Figure 5). The focus is on frames where a specific heuristic
significantly influences the F1 score, as determined by the CPS. A frame was included
in this analysis if its CPS was higher than 10 and it was the highest score compared
to the other heuristics. Identifying such frames helps researchers understand which
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Figure 5: Comparison of Heuristic Performance in Terms of Frame Coverage and Support. The
x-axis shows the three main heuristics: Network Connection Strength, Local Dependency Preference,
and Frequency-Based Priority. The left y-axis (blue bars) represents the number of frames where each
heuristic had a large impact (CPS > 10) and outperformed others. The right y-axis (orange dots) shows
the mean support value of these frames. This plot illustrates both the breadth (number of frames) and
depth (average support) of each heuristic’s effectiveness.

heuristics perform exceptionally well in specific instances, informing potential areas
for optimization and further development.

Figure 5 provides an overview of how each heuristic performs. The x-axis displays
the three main heuristics: Network Connection Strength, Local Dependency Prefer-
ence, and Frequency-Based Priority. For each heuristic, two key metrics are shown:
(1) the blue bars, corresponding to the left y-axis, represent the number of frames
where the heuristic had a large impact (CPS > 10) and outperformed the others. This
metric indicates the breadth of the heuristic’s effectiveness across frames. (2) The red
dots, corresponding to the right y-axis, show the mean support value of these frames.
The support value reflects how frequently these frames appear in the dataset.

The Network Connection Strength and Local Dependency Preference heuristics
have a significantly higher number of frames where they outperform the other heuris-
tics. Moreover, they also perform better on frames with higher support values. This
aligns with the findings from the macro evaluation. On the other hand, the other
heuristic (Frequency-Based Priority) has significantly fewer frames where they score
the best, and these frames also have a lower support value overall.

When analyzing the frame performance in relation to specific heuristics (Figure 6),
it is evident that specific heuristics have a more considerable positive impact on partic-
ular frames. Investigating these relationships between heuristic settings and grammar
performance across various frame contexts can provide valuable insights to develop



22 Evaluating CCxGs for SFE

Figure 6: Visualization of heuristics’ performance by frame, highlighting which heuristic achieved
the highest F1 score for each frame. Different colors represent distinct heuristics, while the numbers
indicate each mean F1 score across all grammars (bottom), and for the highest support frames, an extra
number shows the mean F1 score for grammars using the top-performing heuristic (top).

more effective grammar configurations.
For frames with high support values, the Network Connection Strength heuristic

stands out in its performance. For example, in the case of the “AFFIRM” frame, which
has a support of 117204, the NetworkConnection Strength heuristic has a composite
performance score (CPS) of 43.3, indicating that grammars using this heuristic score
significantly higher than the general F1 score of 0.67. Similarly, for the “COPULA”
frame with a support of 82296, the Network Connection Strength heuristic has a
CPS of 37.8. These high CPS values suggest that the Network Connection Strength
heuristic significantly improves the grammars’ performance for these frames.

Similarly, the Local Dependency Preference heuristic performs well for specific
frames. For the “REQUIRE_NEED_WANT_HOPE” frame with a support of
38818, the Local Dependency Preference heuristic has a CPS of 19.9. The same
trend is observed for the “SPEAK” frame, with a support of 34042, where the Local
Dependency Preference heuristic has a CPS of 15.8. These findings suggest that
the Local Dependency Preference heuristic helps the grammars to more accurately
capture the relationships between different elements within these frames, resulting in
improved performance.

The Frequency-Based Priority heuristic shows a significant positive impact on the
“TAKE” frame, with a CPS of 18.0 compared to the general F1 score of 0.40. This
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indicates that the Frequency-Based Priority heuristic helps the grammars to better
handle the linguistic patterns within this frame, resulting in improved performance.
However, as expected based on the macro evaluation, this heuristic hurts the overall
performance of the grammars. This is because the Frequency-Based Priority heuris-
tic performs poorly on most frames with high support values.

5 Discussion and Future Directions

This discussion examines the findings and their potential implications for the ongo-
ing development of large-scale construction grammars. The insights from the macro
and frame-level evaluations and analyses of construction applications across different
frame clusters provide a nuanced understanding of how various grammar configu-
rations perform in predicting different PropBank frames. The analysis highlights
that heuristics play an important role. Specifically, the three heuristics examined,
Frequency-Based Priority, Local Dependency Preference, and Network Connec-
tion Strength have a significant impact on grammar performance, suggesting that the
implementation of well-designed heuristics is crucial.

The consistent performance of the Network Connection Strength heuristic across
various frames and configurations indicates that the connections between construc-
tions in the categorial network are relevant for accurate frame prediction. This heuris-
tic’s effectiveness suggests that the strength of associations between constructions is
a factor in language processing, potentially reflecting aspects of how linguistic knowl-
edge is accessed and utilized during comprehension. The performance of this heuris-
tic in predicting frames suggests that the network structure of linguistic knowledge
may be more than a representational choice but a fundamental aspect that directly
influences language processing.

Examining frame performance revealed specific trends and variations across differ-
ent verb clusters, which provide insights into the nature of different semantic frames
and their processing requirements. In the “AFFIRM” frame (e.g., “Corporate lawyers
said the new fees wouldn’t inhibit many”), the Network Connection Strength heuris-
tic performs well. The construction application process for this heuristic involved
navigating complex relationships between multiple entities and actions. It correctly
identified “said” as the main predicate with the sense “say.01” (meaning “to express in
words”) and accurately assigned the arguments “Corporate lawyers” as Arg0 and the
entire clause “the new fees wouldn’t inhibit many” as Arg1. This success might be at-
tributed to the heuristic’s ability to leverage the interconnected nature of the categorial
network, allowing it to handle complex, embedded structures effectively. In contrast,
the Frequency-Based Priority heuristic struggled with this sentence, failing to cap-
ture the embedded structure. It only identified “said” as the main predicate without
correctly assigning the complex Arg1. This limitation could be due to its reliance
on frequency data, which may not adequately represent the nuanced relationships in
complex sentences. The Local Dependency Preference heuristic performed better
than Frequency-Based Priority but still missed some nuances, incorrectly identify-
ing “lawyers” as Arg0 without including “Corporate”. This partial success might stem
from its focus on nearby syntactic relationships, which captures some but not all of
the sentence’s complexity with this particular semantic frame.
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For the “REQUIRE_NEED_WANT_HOPE” frame (e.g., “They want to tell the
Good News in the areas”), the Local Dependency Preference heuristic shows good
performance. In processing this sentence, the heuristic prioritized local syntactic rela-
tionships, correctly identifying “want” with the sense “want.01” (meaning “to desire”)
as the main predicate and “to tell the Good News in the areas” as its complement.
This success may be due to the heuristic’s emphasis on nearby syntactic relationships,
which aligns well with the structure of desire expressions in English. The Frequency-
Based Priority heuristic struggled, failing to capture the relationship between “want”
and the infinitive clause “to tell”. It only identified “want” and “tell” as separate pred-
icates without connecting them properly.

Interestingly, in the “TAKE” frame (e.g., “She took her business to First Atlanta”),
the Frequency-Based Priority heuristic outperforms others, matching the gold stan-
dard perfectly. This heuristic correctly identified “took” with the sense “take.01”
(meaning “to move something or someone”) as the main predicate and accurately
assigned “She” as Arg0, “her business” as Arg1, and “to First Atlanta” as Argm-dir.
This success might be due to the high frequency and relatively straightforward struc-
ture of such “take” expressions in the training data. Surprisingly, the Network Con-
nection Strength heuristic underperformed in this example, misidentifying the frame
and failing to assign core arguments correctly. This unexpected failure could be due
to an overemphasis on certain network connections, leading to misinterpreting the
verb’s role. The Local Dependency Preference heuristic performed better than Net-
work Connection Strength but still misclassified “to First Atlanta” as Arg3 instead
of Argm-dir. This partial success might be attributed to its accurate capture of local
relationships but a failure to distinguish between core and modifier arguments in this
context.

These variations across verb clusters reflect the complexity of verb semantics and
their associated frames, suggesting that verbs and their frames may have specific struc-
tural and semantic properties that affect how they are processed. This finding has im-
plications for both understanding language structure and computational implementa-
tions. It suggests that different semantic domains might be structured and processed
differently. Some concepts might be organized more in terms of their frequency and
common usage, while others might rely more on complex networks of associations
or local syntactic patterns. It indicates that a one-size-fits-all approach to heuristics
in construction grammars may not be optimal for computational implementations.
Instead, future development of computational construction grammars could consider
a more nuanced, frame-specific approach to heuristic application. This could involve
developing mechanisms for heuristic selection or weighting based on frame proper-
ties. For instance, for frames like “AFFIRM” that involve complex relationships, the
Network Connection Strength heuristic could be given higher weight. For frames ex-
pressing desires or intentions like “REQUIRE_NEED_WANT_HOPE”, the Local
Dependency Preference heuristic might be prioritized. For common action frames
like “TAKE”, the Frequency-Based Priority heuristic could play a more significant
role. Additionally, exploring ways to combine heuristics meaningfully could lead to
more robust and flexible grammar implementations. For example, a weighted combi-
nation of Network Connection Strength and Frequency-Based Priority might cap-
ture both the structural complexity and the common usage patterns of specific frames.
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Moreover, exploring how these computational findings relate to psycholinguistic re-
search on human language processing could lead to valuable insights.

The challenges observed in handling modifiers and multi-sense verb rolesets indi-
cate areas for potential improvement. Future research should explore techniques for
better representing and processing these complex linguistic elements within the frame-
work. This might include developing specialized processing strategies for modifiers
and ambiguous verbs, potentially informed by studies on human language comprehen-
sion. The insights from this study suggest that further alignment between computa-
tional models and linguistic theory could be beneficial. For instance, the performance
of network-based heuristics could inform theoretical models of language acquisition
and processing. Similarly, insights from psycholinguistic research on semantic frame
processing could guide the development of computational models.

The practical utility of CxG in applications like frame-semantic analysis of texts and
construction-based corpus searches has been suggested by the findings. However, this
potential has not yet been fully realized. In light of the findings, it is evident that devel-
oping more refined and complete heuristics is crucial to enhancing the performance of
construction grammars. A more qualitative approach could also be employed to delve
deeper into the workings of the heuristics. Examining specific cases where heuristics
succeed or fail in capturing the nuanced relationships between different sentence ele-
ments could offer more concrete insights into their mechanics and effectiveness. Such
an approach would allow pinpointing the areas where improvements are needed and
guide the development of more precise and robust heuristics.

Moreover, an intriguing avenue for future research would be to explore the po-
tential application of these grammars in the formulation of sentences, as opposed to
comprehension. This would involve utilizing the grammars to formulate a sentence
from a given meaning representation, thereby reversing the current process of com-
prehending a sentence to derive its meaning representation. Investigating the efficacy
of construction grammars in this context could provide valuable insights into their
versatility and practical utility in various language applications.

6 Conclusion

This study provides an evaluation of large-scale, computational construction gram-
mars and their ability to extract semantic roles and frames from English sentences.
The analysis of the computational construction grammars has offered valuable in-
sights that contribute to the refinement and progression of future grammars. These
findings highlight the potential and importance of construction grammars in the fields
of natural language processing and artificial intelligence.

The study identifies Frequency-Based Priority, Local Dependency Preference,
and Network Connection Strength as key heuristics in defining the search and appli-
cation process for extracting semantic frames. The importance of these heuristics in
affecting the performance of grammars is evident. However, all grammars examined
faced challenges in specific areas, particularly in handling modifiers and multi-sense
verb rolesets, providing clear directions for future research and development.

The study reveals complex relationships between heuristics and specific seman-
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tic frames, showing that the effectiveness of certain heuristics varies depending on
the frames and their semantic and syntactic information. For instance, Network
Connection Strength performs well in frames with higher support like “AFFIRM”
and “SEE”, while Local Dependency Preference excels in frames like “REQUIRE_
NEED_WANT_HOPE” and “SPEAK”. Interestingly, Frequency-Based Priority,
while generally underperforming, shows unexpected strength in the “TAKE” frame.

These variations suggest that different semantic domains might be structured and
processed differently, indicating that a one-size-fits-all approach to heuristics in con-
struction grammars may not be optimal. Instead, future development of compu-
tational construction grammars could benefit from a more nuanced, frame-specific
approach to heuristic application.

The potential practical utility of Construction Grammar in applications such as
frame-semantic analysis of texts and construction-based corpus searches is evident
(see also Beuls, Van Eecke, and Cangalovic 2021). Still, this potential has yet to
be fully realized. Developing more refined and complete heuristics is crucial to en-
hancing the performance of construction grammars, particularly when dealing with
modifiers and certain rolesets.

Future research directions include exploring hybrid approaches that combine dif-
ferent heuristics, developing adaptive systems for heuristic selection based on frame
properties, and investigating the application of these grammars in sentence formula-
tion. Additionally, addressing the challenges in handling modifiers and multi-sense
verb rolesets could significantly improve the overall performance of these grammars.

As integration between Cognitive Linguistics and AI progresses, construction gram-
mars could play a significant role. Insights from this study could inform the refine-
ment of heuristics and encourage deeper exploration of construction grammars in
linguistic and AI tasks. The varying effectiveness of different heuristics across frame
types suggests a complex picture of language processing, pointing towards a model
where different semantic domains might be structured and accessed in different ways.

There is still much to uncover about the capabilities of construction grammars. As
these computational models continue to be refined, they may offer deeper insights
into the nature of language and cognition. The future holds numerous opportunities
for further research and innovation in this intriguing and continuously evolving field.
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A Learning PropBank Grammars

The process of learning large-scale construction grammars from PropBank annota-
tions has been implemented within the Babel environment6. This environment sup-
ports a wide range of operations that pertain to language processing, learning, and
analysis. The procedure of deriving a construction grammar from a PropBank anno-
tated corpus adheres to the following stages:

1. It begins with a set of sentences, each with a PropBank annotation layer, serving
as the input.

2. Constructions, which are pairings of form and meaning, are extracted from
these annotated sentences according to specified learning configurations. In
this context, the form refers to syntactic tree structures, while the meaning cor-
responds to semantic roles. The learning configurations play a crucial role in
selecting or excluding certain rolesets and determining which roles will be in-
cluded in the learning phase.

3. The end result is a collection of newly learned constructions that are compiled
into a construction inventory.

After completing this procedure for the entire set of sentences, the resulting con-
struction inventory, along with its associated categorial network, forms the grammar.
The construction inventory contains the learned constructions, while the categorial
network organizes these constructions into a systematic and interconnected structure.
As more constructions are learned from annotated PropBank sentences, both the in-
ventory and the categorial network continue to expand and diversify. Together, they
can then be used to comprehend and extract frames from unannotated sentences.
This learning process effectively creates a PropBank grammar based on a corpus of
PropBank-annotated sentences, enabling the operationalization of large-scale usage-
based construction grammar.

To provide a clearer understanding of how this categorial network evolves as it inte-
grates more learned constructions, a practical illustration is given. This example will
depict the development of the categorial network, showcasing how the learning and
incorporation of new constructions incrementally expand this network. Additionally,
it highlights the features of the acquired constructions.

This practical example involves the creation of a custom corpus including PropBank
annotated sentences. First, the PropBank annotated sentence(s) added to the corpus
will be shown. This is then followed by the state of the construction inventory and
categorial network after the grammar has learned and incorporated the constructions
from these sentences.

The first annotated sentence that will be used to learn constructions is “I tell my

6 https://emergent-languages.org/
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sister a story” (Table 5).

Table 5: PropBank annotations for “I tell my sister a story”

String Sense Lemma Roles

I - - ARG0
tell tell.01 tell V
my sister - - ARG2
a story - - ARG1

Figure 7: Construction inventory and categorial network after learning “I tell my sister a story”

As the construction inventory and categorial network show in Figure 7, from the
sentence “I tell my sister a story”, three constructions were learned. The lexical con-
struction “tell(v)” (Figure 8), the word sense construction “tell.01” (Figure 9) and
the argument structure construction “arg0(np)-v(v)-arg2(np)-arg1(np)” (Figure 10).
Specifically, lexical constructions pinpoint the verb’s form, word sense constructions
represent the verb’s context or specific sense, and argument structure constructions
bridge syntactic structures to semantic roles at precise locations within the syntactic
tree. These are connected to each other in a network (Figure 7).

Zooming in on the learned argument structure construction (Figure 10), several
components are present:

• arg0(np)+v(v)+arg2(np)+arg1(np)-1+2-cxn (argument-structure-cxn 1): This
identifier represents a complex argument structure construction. It indicates
that this construction is concerned with a sentence structure involving an ARG0
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Figure 8: The lexical construction for the verb “tell”. It shows the unit’s designation as a verb ({v}) with
the lemma “tell” and its category within the grammar as tell(v)-1. This construction is used to identify
and process the verb “tell”.

noun phrase (np), a verb (v), an ARG2 noun phrase, and an ARG1 noun phrase.
Moving to the left box:
• ?tell-1: This unit within the construction contributes to the overall meaning

and structure of the construction.
– frame-evoking: It indicates the construction is responsible for evoking a

semantic frame, providing the structure for a situation that includes various
participants and their actions.

– footprints: {fee}: It indicates that a frame-evoking element construction
has already been applied in the comprehension process.

– gram-category: It specifies the grammatical categories from the categorial
network that are involved in this construction, corresponding to ARG0
(subject noun phrase), the verb, ARG2 (indirect object noun phrase), and
ARG1 (direct object noun phrase).

– frame: This is a placeholder for the name of the semantic frame that the
construction is part of.

– meaning: It describes the semantic roles associated with the frame ele-
ments, indicating the construction’s role in mapping the syntactic structure
to the semantic roles within the specified frame.

On the right side of the figure, several units represent different components of the
sentence structure that fit this construction. Each unit is connected to a parent unit,
indicating its place in the hierarchy of the sentence structure. The syntactic class (syn-
class) for each unit indicates whether it is a noun phrase (np), verb (v), sentence (s), or
verb phrase (vp).

This construction, as a whole, captures how the verb “tell” is used in a sentence with
a subject, indirect object, and direct object, and how these elements are interrelated
both syntactically and semantically. More extensive coverage of how constructions
are designed in FCG can be found in Chapter 3 of Van Eecke’s (2018) dissertation.

Now, a second annotated sentence will be added: “I told a story to my sister” Ta-
ble 6.
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Figure 9: The word sense construction for the sense “tell.01”. This construction is crucial for distin-
guishing between different meanings of the verb “tell” in processing.

Figure 10: The argument structure construction extracted from the sentence “I tell my sister a story”.
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Table 6: PropBank annotations for “I told a story to my sister”

String Sense Lemma Roles

I - - ARG0
told tell.01 tell V
a story - - ARG1
to my sister - - ARG2

This sentence contains the same word sense (tell.01) and lexical (tell) construction
but a different argument structure construction (ditransitive).

Figure 11: Construction inventory and categorial network after learning “I told a story to my sister”

Only one new construction is learned, namely the “arg0(np)-v(v)-arg1(np)-arg2(pp)”
argument structure construction. This construction is added to the inventory and new
links are made in the categorial network, connecting the existing word sense and lex-
ical construction to the new argument structure construction.

Then, a couple more sentences are added to the corpus. These include the word
sense “give.01” in both the ditransitive and dative alternation. In other words, no
new argument structure constructions are added but a new lexical and word sense
construction is brought into the corpus. The additional sentences are:

• I gave flowers to my mother (Table 7).
• I gave mother flowers (Table 8).
• She gives candy to her daughters (Table 9).
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Table 7: PropBank annotations for “I gave flowers to my mother”

String Sense Lemma Roles

I - - ARG0
gave give.01 give V
flowers - - ARG1
to, my mother - - ARG2

Table 8: PropBank annotations for “I gave mother flowers”

String Sense Lemma Roles

I - - ARG0
gave give.01 give V
mother - - ARG2
flowers - - ARG1

Table 9: PropBank annotations for “She gives candy to her daughter”

String Sense Lemma Roles

She - - ARG0
gives give.01 give V
candy - - ARG1
to her daughter - - ARG2

By adding new word sense and lexical constructions, the network quickly expands.
Now, not only “tell.01” and “tell(v) are connected to the ditransitive and dative alterna-
tion construction but these argument structure constructions are also linked to”give.01”
and “give(v)”.

The next sentence that is added is “I send postcards to my mother” (Table 10).
Table 10: PropBank annotations for “I send postcards to my brother”

String Sense Lemma Roles

I - - ARG0
send send.01 send V
postcards - - ARG1
to, my brother - - ARG2

This sentence again features the same argument structure construction but a differ-
ent word sense and lexical construction.

The word sense cxn “send.01” and lexical cxn “send(v)” are added to the inventory
and network. In the categorial network, these nodes are linked to the ditransitive
argument structure construction “arg0(np)-v(v)-arg1(np)-arg2(pp)” which in turn is
linked to the other lexical and word sense constructions.

Next, the following sentences are added:
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Figure 12: Construction inventory and categorial network after learning “give.01” and “give”
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Figure 13: Construction inventory and categorial network after learning “send.01” and “send”
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• He runs every morning (Table 11).
• I run the business (Table 12).
• I run a marathon (Table 13).
• I run in the park (Table 14).

Table 11: PropBank annotations for “He runs every morning”

String Sense Lemma Roles

He - - ARG0
runs run.02 run V
every morning - - ARGM-TMP

Table 12: PropBank annotations for “I run the business”

String Sense Lemma Roles

I - - ARG0
run run.01 run V
the business - - ARG1

Table 13: PropBank annotations for “I run a marathon”

String Sense Lemma Roles

I - - ARG0
run run.02 run V
a marathon - - ARG1

Table 14: PropBank annotations for “I run in the park”

String Sense Lemma Roles

I - - ARG0
run run.02 run V
in the park - - ARGM-LOC

These “run” sentences do not share anything with the previous annotated sentences.
Therefore, they do not create any links to the other previously learned constructions.
Specifically, they contain one new lexical construction (run), two new word sense
constructions (run.01, run.02), two new argument structure constructions, a location
modifier phrase construction (in the park) and a temporal modifier construction (every
morning).

Note that only the location modifier phrase construction is added to the network.
Additionally, the two word sense constructions share the argument structure construc-
tion “arg0(np)-v(v)-arg1(np)” indicating that these word senses can be embedded in
this argument structure construction.
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The final sentence includes a modal modifier: “We must prepare for the exams”
(Table 15).

Table 15: PropBank annotations for “We must prepare for the exam”

String Sense Lemma Roles

We - - ARG0
must - - ARGM-MOD
prepare prepare.01 prepare V
for the exam - - ARG2

Once again, this new sentence can not be linked to any of the preexisting construc-
tions in the network. They can only be linked to each other. It contains a new lexical
construction (prepare), a new word sense construction (prepare.01), a new argument
structure construction, and a new modal modifier construction (must).

Note that the modal modifier construction is added to the inventory but not the
network as it is not unique to a single word sense or lexical construction.

After learning the lexical, argument structure and word sense constructions from
these 11 annotated sentences, the resulting construction inventory contains 19 con-
structions. Out of these 19 constructions, there are 5 lexical, 6 word sense and 8
argument structure constructions. The final categorial network is depicted in Fig-
ure 18. This network can then be used to comprehend and extract frames from
English sentences.

Figure 14: Construction inventory after learning the “run” sentences
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Figure 15: Categorial network after learning the “run” sentences

Figure 16: Construction inventory after learning “We must prepare for the exams”
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Figure 17: Categorial network after learning “We must prepare for the exams”

B ComprehendingandExtractingFrameswithaPropBankGram-
mar

This task is divided into two main steps: comprehension and frame extraction. After
this general overview, more details are provided regarding the heuristics that guide
the construction application.

The comprehension phase includes the following steps:
1. De-rendering the Sentence: The sentence is turned into an initial transient

structure, a preliminary representation based on dependency and constituency
structures. In a computational PropBank construction grammar, de-rendering
refers to the conversion of an utterance into an initial transient structure. This
structure is derived using Spacy’s dependency analysis and Benepar’s constituency
analysis. Firstly, an utterance, either as a string or a CoNLL-formatted sentence,
is processed. If the utterance is a string, a syntactic analysis can be performed
if desired. Following this, the initial transient structure is created from the
Benepar analysis. Each node in the analysis is turned into a ‘unit’ in the tran-
sient structure. This unit holds important properties of the node, such as its
type, string, span, parent, and syntactic class. The initial transient structure
serves as a foundation from which the application of constructions can begin.
To illustrate this, the inital transient structure at the start of the comprehension
process for sentence “Sarah gives Peter a new watch” Table 16 is shown in Fig-
ure 19. It is important to point out that the comprehension process operates
on unannotated sentences. The annotations visible in Table 16 are illustrative.
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Figure 18: Full categorial network after learning the sentences from the custom corpus
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Figure 19: Initial transient structure after de-rendering. The “gives” unit is expanded to highlight
which information is present before the application of constructions.

Table 16: PropBank annotations for “Sarah gives Peter a new watch”

String Sense Lemma Roles

Sarah - - ARG0
gives give.01 give V
Peter - - ARG2
a new watch - - ARG1

The initial transient structure for “Sarah gives Peter a new watch” is the result of
the de-rendering process. It shows the information attached to the units before the
construction application begins. The units contain mostly syntactic information, for
example, node-type, parent and syntactic class. Note that before constructions are
applied no information on the meaning is embedded.

2. Application of Constructions: Constructions from the inventory are applied to
the initial transient structure, expanding it to capture more meaning. The selec-
tion of constructions to be applied is managed by the internal structure of the
construction inventory and the construction supplier. Additionally, “heuristics”,
a strategy used to guide construction application, helps regulate this process.
These heuristics assign scores to constructions during application, influencing
which ones are applied but not altering the internal structure of the inventory.
The specific heuristics used can lead to different constructions being applied.
These heuristics will be discussed in more detail later. An example of the ap-
plication process for sentence “Sarah gives Peter a new watch” is visible in Fig-
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Figure 20: The construction application process during comprehension for “Sarah gives Peter a watch”.

ure 20.
The application process for “Sarah gives Peter a new watch” included applying a

lexical, argument structure and word sense construction. These constructions were
used to expand the information embedded in the units of the transient structure.

3. Goal Test: The goal test is a method used within the comprehension process to
determine whether a node has been fully and accurately expanded. It is imple-
mented in a way that ensures that no more applicable constructions are present
when a node has reached its complete expansion and that no constructions can
be applied to its child nodes.

4. Meaning Extraction: The final transient structure is used to create a semantic
network, which contains the sentence’s semantic content. The final transient
structure for sentence “Sarah gives Peter a watch” is shown in Figure 21 and
the resulting meaning is shown in Figure 22.

After the application of constructions, a lot more information is embedded in the
“gives” unit. Now, it not only includes syntactic information but also the meaning,
whether it is a frame-evoking element or not and the frame name is present in the
unit’s body. The comprehended meaning shows the labeled semantic roles which
match the roles shown in Table 16.

After this, the process moves to the frame extraction phase. Here, the final transient
structure is used to extract frames, providing a structured representation of the situa-
tions or events described in the sentence. In the Frame Extraction process, an initial
set of frames is pulled out from the final transient structure. This process involves
examining each unit within the structure to determine if it has the capacity to evoke
a frame. When such a unit is found a new frame is formed. This frame includes
the name of the unit, the element that evokes the frame, and any associated frame
elements:

• Finding the Frame Name: This step includes searching for a feature within the
unit that signifies ‘meaning’, and within this feature, locating a label that specifies
‘frame’.

• Identifying the Frame-EvokingElement: Here, the component of the unit that
triggers or instigates the frame is singled out. This usually involves pinpointing
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Figure 21: Final transient structure for “Sarah gives Peter a watch”. The “gives” unit is expanded to
highlight which information was added after the application of constructions.

Figure 22: Resulting meaning after comprehension for “Sarah gives Peter a watch”.
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Figure 23: Resulting frameset after frame extraction for “Sarah gives Peter a watch”.

the features of the unit denoted as ‘span’ and ‘string’, which are correspondingly
linked to the indices and actual string of the frame-evoking element.

• Identifying Frame Elements: This part of the process recognizes the elements
associated with the frame within the transient structure. These elements depict
the participants or entities involved in the action of the frame. The identification
of frame elements is achieved by looking for labels signifying ‘frame-element’
in the feature of the unit representing ‘meaning’. For every ‘frame-element’
label found, the corresponding unit is identified within the transient structure
and a new frame element instance is created. This instance includes the name,
role, string, and indices of the frame element.

After all these steps, the frameset (a collection of frames) is created and returned.
The frameset for the sentence “Sarah gives Peter a watch” is shown in Figure 23.
The frameset for this sentence contains a single frame “give.01” which has “gives” as
Frame Evoking Element, “Sarah” as Arg0/giver, “Peter” as Arg2/entity given to, and
“a new watch” as Arg1/thing given.
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