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Abstract

Constructionist theories of language acquisition claim that all linguistic knowledge
can be captured in form-meaning mappings, which can vary in size and degree of ab-
straction and can contain information from all levels of linguistic analysis. Evidence
from child language acquisition suggests that this linguistic knowledge is learned from
situated, communicative interactions, where children observe unsegmented, continu-
ous speech acts. However, current computational operationalisations of construction
grammar do not fully corroborate these theoretical claims. Specifically, it is difficult
to combine constructions of varying levels of granularity in the same constructional
analysis and it is not feasible to learn computational construction grammars from
unsegmented input. Both issues result from treating segmentation and language
processing as separate steps, while in children these processes are intertwined. In
response, we introduce two novel algorithms in this paper: one for the processing of
constructions in which the linguistic forms are represented as unsegmented character
sequences, and one for the learning of constructions starting from unsegmented lin-
guistic forms. The novelty lies in operating directly on character sequences, thereby
removing the need for a pre-segmentation step prior to linguistic processing. We op-
erationalise these two algorithms within the framework of Fluid Construction Gram-
mar and illustrate their application through several examples. Through these novel
algorithms, we aim to offer greater flexibility to construction grammarians for imple-
menting constructional analyses as well as to pave the way for experiments where the
segmentation of continuous input is learned jointly with the constructions. In this
way, we bring the computational implementation of construction grammar closer to
its theoretical foundations.

1 Introduction

Children demonstrate a remarkable ability to acquire language. They are able to
construct a “fluid and dynamic” (Bybee & Beckner 2009: p. 854) language system
by organizing their experiences with language use through domain-general cognitive
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2 Unsegmented linguistic input in computational construction grammar

processes (Bybee 2006; Tomasello 2003). The resulting linguistic knowledge is cap-
tured in a set of form-meaning mappings that children derive from situated, commu-
nicative interactions (Beuls & Van Eecke 2024). In terms of form, children observe
unsegmented streams of input (Ambridge & Lieven 2011: p. 47), i.e. utterances pro-
duced by their caregivers, while the meaning is reconstructed from the environment
in which the utterances are observed and from hypotheses about the underlying inten-
tions of their caregivers. For example, the child’s own name, mommy or daddy might be
meaningful patterns referring to the child itself, its mother or its father, respectively.
Larger patterns such as you want more milk? can also be meaningful when paired with
the expectation of receiving more milk. In order to acquire such meaningful patterns,
children require mechanisms that allow them to identify statistical regularities (Saffran
et al. 1996; Aslin et al. 1996), as well as commonalities and differences in both the
form and the meaning (Lieven et al. 1997; Tomasello 2003, 2006; Abbot-Smith &
Tomasello 2006; Ambridge & Lieven 2015). The former helps children to segment
the continuous input, while the latter allows them to generalise over observations, re-
sulting in a more abstract and efficient linguistic framework. Indeed, when the child
is in the beginning stages of language learning, they will not know the meaning of the
word milk, nor that milk is a word. Instead, they will first store an observation such
as you want more milk? and its hypothesised meaning holistically. By learning how to
segment these utterances, and by generalising over similar observations, the child will
eventually discover that milk is a separate word and its meaning is a nutritious white
liquid. These mechanisms for linguistic segmentation and processing are highly inter-
twined and more experiments investigating the interaction between them are needed

(Jones et al. 2010).

The patterns that children learn are mappings between form and a hypothesised
meaning. According to constructionist theories as introduced by, among others, Fill-
more (1968, 1988), Croft (1991), and Goldberg (1995, 2003), such mappings con-
stitute the basic units of language. Constructions can consist in any combination of
morphological, lexical and grammatical information on the form side, paired with
semantic and pragmatic information on the meaning side (Fillmore 1968; Goldberg
2008, 2006). Moreover, there is no distinction between constructions that capture
lexical or grammatical patterns, since “lexicon, morphology and syntax form a con-
tinuum of symbolic structures” (Langacker 1987: p. 3). Therefore, all constructions
can be of “arbitrary size and degree of abstraction” (Beuls & Van Eecke 2023: p.
43). From this, it becomes apparent that constructions are not constrained at the
word level. As a matter of fact, as Goldberg (2003: p. 219) states, constructions
range from morphemes to words all the way up to “general linguistic patterns”. This
can be exemplified by morphological constructions, such as pre-N or V-ing (Goldberg
2006: p. 52), as well as idiomatic expressions such as the let-alone construction (Fill-
more et al. 1988: p. 511) or the X-er the Y-er construction (Goldberg 2003: p. 55).
Even though construction grammar mainly focuses on larger grammatical patterns
(Ungerer & Hartmann 2028), construction morphology (Booij 2010; Audring et al.
2013; Booij & Audring 2017) investigates also the smaller patterns in language.

Computational models of construction grammar (Bergen & Chang 2005; Gaspers
et al. 2011; Steels 2011b; Boas & Sag 2012; Dunn 2017) focus on operationalising

the fundamentals of Construction Grammar in computational systems. They can be
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used to test and implement construction grammar theories (Beuls & Van Eecke 2023).
However, to date, the view that constructions can range from the morphological level
all the way to the syntactical level is not truly reflected in computational construc-
tion grammar frameworks. Additionally, several of these frameworks separate the
segmentation of linguistic utterances from the linguistic analysis and learning of con-
structions. This leads to the analyses and learned constructions being restricted to
the specificity of the chosen segments (e.g. words or morphemes). Integrating anal-
yses from different levels of granularity, for example combining morphological and
idiomatic constructions, still represents a challenge in the computational implemen-
tation of linguistic theories. Take for example the sentence He never went swimming
let alone diving showing, amongst others, morphological constructions (/-ing) and an
idiomatic construction (X let-alone Y). Choosing a segmentation on the morphologi-
cal level will allow to capture the V-ing construction, but will not treat let alone as a
single segment. Vice-versa, choosing a less fine-grained segmentation might allow to
capture let alone, but will not separate the verb stem from the suffix. In many compu-
tational approaches, the level of segmentation needs to be chosen on beforehand, and
is typically based on whitespaces. This capturing neither the -ing nor the let alone as
separate segments.

Not only computational construction grammar frameworks, but also many other
models in computational linguistics and NLP at large, rely on a pre-segmentation
step using various types of tokenisers (Sennrich et al. 2016; Wu et al. 2016; Kudo &
Richardson 2018). However, reliance thereon has been argued to have several draw-
backs. For one, any errors in the segmentation process might propagate throughout
the subsequent linguistic analysis or influence the learning system that relies on it.
Additionally, many of these tokenisers often lose fine-grained morphosyntactic in-
formation in low-resource languages and languages with more complex morphology
than English (Kudo & Richardson 2018; Oudah et al. 2019; Clark et al. 2022) and
have also been shown to introduce biases (Gaido et al. 2021; Petrov et al. 2023).

In this paper, we aim to bridge the gap between construction grammar theory and its
computational implementation by introducing novel algorithms for representing, pro-
cessing and learning computational construction grammars that work on unsegmented
input.! Indeed, while construction grammar theory, inspired by language acquisition
processes, states that constructions can contain information from all levels of linguis-
tic analysis, computational implementations typically rely on a pre-segmentation step
that is separate from processing. Similarly, constructional learning experiments begin
by segmenting the input before learning constructions (see e.g. Nevens et al. 2022
and Doumen et al. 2023, 2024). This ultimately limits the constructional analysis
and the learned constructions to the granularity of the segments that is chosen on
beforehand. Therefore, we introduce a novel way of representing the form side of
constructions, as well as processing mechanisms for both language comprehension
and production. Instead of relying on separate segments, the form side of construc-
tions can now be represented as continuous sequences of characters. These can in
turn be used in constructional language processing through a novel mechanism that
relies on a regular expression search of the character sequence. In this way, we can

I The algorithms are fully implemented and integrated in the open-source FCG framework, which
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avoid the need for a pre-segmentation process, evading the percolation of segmenta-
tion errors and bearing the promise of being more language-independent. Moreover,
we present a proof of concept of how this new representation can be used in learning
constructions from semantically annotated corpora extending the work by Doumen
et al. (2023, 2024). Together, the new representation, processing and learning mech-
anisms will enable construction grammarians (i) to have more flexibility in analysing
and processing languages that have richer and more complex morphological systems,
(ii) to analyse and process languages at varying degree of abstraction simultaneously
in a more straightforward way (i.e. combining constructions for morphemes, words,
multi-word expressions, idioms, grammatical patterns, etc.) and (iii) to automatically
learn these distinctions in the form of constructions from unsegmented input.

We start the paper by describing how the form side of constructions is represented,
processed and learned in different computational construction grammar approaches
(Section 2). Then, we provide a high-level overview of constructional language pro-
cessing in FCG (Section 3). Afterwards, we introduce our new method for processing
and learning unsegmented linguistic forms in FCG (Section 4). Finally, we discuss
the implications of our novel contribution and draw our conclusions (Section 5).

2 Related Work

In what follows, we provide an overview of computational construction grammar ap-
proaches and how they deal with the level of segmentation on the form side of the
analysis. For each approach, we focus on answering two questions: (i) is there a pre-
segmentation step that is separate from processing or learning? and (ii) is it possible to
have a construction spanning the entire continuum, i.e. from the morphological level
to the syntactic level? In this overview, we include approaches that identify themselves
as “construction grammar” and that have a computational implementation. In partic-
ular, we discuss the Sign-based Construction Grammar (Boas & Sag 2012; Michaelis
2013), Embodied Construction Grammar (Bergen & Chang 2005) and Fluid Con-
struction Grammar (Steels 2011a, 2017; van Trijp et al. 2022; Beuls & Van Eecke
2023) frameworks. We also include the computational approaches to learning con-
struction grammars proposed by Dunn (2017, 2024) as well as by Gaspers et al. (2011,
2017) and Gaspers & Cimiano (2014).

As summarised by Ungerer & Hartmann (2023), Sign-based Construction Gram-
mar (SBCG) (Boas & Sag 2012; Michaelis 2018) has focused on providing construc-
tional analyses of a wide variety of constructions, ranging from morphological and
lexical to syntactical constructions. Its focal point is most often on the description of
linguistic phenomena (Ungerer & Hartmann 2023). Signs in SBCG are represented
as feature structures that include “phonology, (morphological) form, syntax (e.g., a
word’s syntactic category and combinatorial potential), semantics (e.g., the frames
that collectively define the meaning of a word, a word’s referential index) and use
conditions (e.g., the information-structure articulation of a phrasal type)” (Michaelis
2013: p. 2). In theory, SBCG thus models constructions from different levels of
granularity (morphological to syntactical). One cannot really make the distinction be-
tween segmentation and processing in SBCG due to the absence of a computational
formalism. Although implementations of Head-Driven Phrase Structure Grammar
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could be re-used due to their close relatedness, no direct implementations of SBCG
are known (van Trijp 2013a).

According to the overview presented by Chang (2008: Ch. 38), the Embodied Con-
struction Grammar (ECG) formalism is capable of accommodating various forms and
relations between them. Typically, phonological schemas and their temporal order-
ing relations are represented (Bergen et al. 2004). Such relations are used to describe
concatenative morphology (affixation) as well as syntax (word order) (Chang 2008:
p. 65). Within this framework, Bergen (2008) presents various morphological anal-
yses of the English present tense and past tense. He discusses the meaningfulness
of the agreement markers, morpho-phonological alternations and in general how the
ECG framework may be used to represent and relate morphological forms. These
analyses include morphological constructions for the verb root and past tense suffixes.
Schneider (2010) extends ECG to include non-concatenative morphology. In par-
ticular, he presents a case study for Hebrew verbs, however, with the intention of
providing a more general framework that can be extended to other morphological
phenomena as well. Moreover, it shows how the morphological constructions can
be integrated with syntactic structures, specifically argument structure constructions.
The ECG framework is thus capable of accounting for different levels of granularity
in the constructions and thereby does not seem to rely on a pre-segmentation process.
However, this framework does not combine these different levels of granularity in
bidirectional constructional language processing, as it is designed for comprehension
only (van Trijp et al. 2022). Also, the full range of constructions (from morphological
to syntactical) is not exploited in the learning of constructions in ECG introduced by
Chang (2008), as it starts from a predefined lexicon (Doumen et al. 2025).

Dunn (2017, 2024) provides a computational framework for learning construction
grammars. Within this framework, he represents constructions from different levels
of abstraction as combinations of lexical, syntactical and semantic information. Al-
though the learned constructions can range from lexical and item-based to abstract
constructions, their representation does not go all the way down to the morpheme
level. Indeed, Dunn (2024) states that the “expansion of computational CxG to in-
clude constructional morphology remains a problem for future work” (Dunn 2024:
p. 10). The lexical constructions rely on a pre-segmentation based on spaces, while
the item-based constructions do not rely on pre-segmentation as they make use of
character-based embeddings.

Gaspers et al. (2011) introduce an algorithm for inducing grammars that consist in
form-meaning mappings in an unsupervised way. In this algorithm, the first step is
to learn a lexicon that is used to make generalisations in a second step. The lexicon is
learned through finding statistical regularities based on either tokens or smaller units
such as phonemes (Gaspers et al. 2017). In these models, the segmentation into word-
like units is thus learned as a first step. Furthermore, Gaspers et al. (2014) provide a
model for learning verb-general constructions, however, they do not focus on learning
morphology.

Fluid Construction Grammar (Steels 2011a, 2017; van Trijp et al. 2022; Beuls &
Van Eecke 2028) is a computational framework for representing, processing and lean-
ing construction grammars. It relies on a pre-segmentation step that can be configured
according to the desired linguistic analysis. Typically, utterances are segmented by



6 Unsegmented linguistic input in computational construction grammar

splitting on spaces. However, the FCG framework allows to specify custom segmen-
tation algorithms, e.g. tailor-made for a linguistic phenomenon. For instance, FCG
has been used to represent and process various morphological phenomena where the
analyses start from morpheme-based segmentation processes that are tailored towards
German (see e.g. van Trijp 2011b, 2013b and Schmalz & Cornillie 2022), Russian
(see e.g. Gerasymova 2012), and Spanish (see e.g. Beuls 2012). One exception to the
reliance on a fixed pre-segmentation step is the ‘regex operator’ introduced in Beuls
(2013), which allows for more flexibility on the form side of constructions by using
regular expressions and served as inspiration for the novel methodology in this paper.
Although very promising, the functioning of this operator could not be fully extended
to production?, whereas computational construction grammar typically aspires to ac-
count for bidirectional language processing. Doumen et al. (2023, 2024); Nevens
et al. (2022); Beuls & Van Eecke (2023) propose a way of learning computational
construction grammars. However, in those experiments, the learning operators again
start from pre-segmented linguistic utterances.

In short, the field of computational construction grammar does not fully reflect the
view of “constructions all the way down” (Goldberg 2006: p. 18). Indeed, current
computational construction grammars either start from a word-level segmentation for
the learning process (as is the case with Dunn 2017, 2024, Gaspers et al. 2011, 2014,
2017, Doumen et al. 2023, 2024 and Nevens et al. 2022) or fail to fully reflect
the bidirectionality assumed by construction grammarians, i.e. comprehending and
formulating language (as is the case with Chang 2008, Dunn 2017, 2024, Gaspers
et al. 2011, 2014, 2017 and Beuls 2013).

3 Constructional Language Processing in FCG

In this section, we provide a high-level overview of how constructional language pro-
cessing is operationalised in FCG. This section is mostly aimed at readers that are
not familiar with the framework. Here, we introduce concepts and terms that will fa-
cilitate the introduction of the novel character-based form representation in Section
4. This overview is based on the work by Steels (2017), Van Eecke (2018) and van
Trijp et al. (2022). The interested reader is referred to these works for more detailed
descriptions.

Constructional language processing in FCG is the task of finding a sequence of con-
structions, i.e. form-meaning pairs, that can map linguistic utterances to meaning
representations, in the case of language comprehension, or meaning representations
to linguistic utterances, in the case of language production. Central in this process
are so-called transient structures. Transient structures contain all linguistic information
known up to a specific point in language processing. The process starts with an initial
transient structure that is constructed from the input utterance or meaning through
a process called de-rendering. During processing, constructions are said to apply to
transient structures and thereby expand the transient structure with new information.
Different constructions can apply to the same transient structure, thereby creating
different transient structures that lead to different paths in the constructional analysis.

2 We obtained this information in communication with the author.
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Each time a new transient structure is created, it undergoes a test to check whether it
qualifies as a solution. A transient structure is typically considered a solution when the
entire input utterance (in comprehension) or meaning (in production) is consumed
and no more constructions can apply onto it. When a solution is reached, the con-
struction application process stops and the resulting meaning (in comprehension) or
the resulting utterance (in production) is then extracted from the final transient struc-
ture through rendering. Figure 1 gives a schematic overview of such a construction

application process.
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Figure 1: Schematic overview of the construction application process in comprehension. The process
starts with de-rendering the linguistic utterance in the initial transient structure, on which two con-
structions can apply, resulting in two separate transient structures. Only on the first transient structure,
another construction can apply leading to the transient structure that is a solution, from which the
resulting meaning representation is extracted through a rendering process.

Both constructions and transient structures are represented as feature structures.
They can contain linguistic information from all levels of linguistic analysis, such
as morphosyntactic, phonetic and phonological information on the form side, and
semantic and pragmatic information on the meaning side. FCG does not have a
predefined set of features. Instead, the grammar engineer is free to choose the features
that best fit the desired analysis. Features are further organised into units, grouping
together relevant bundles of features. Transient structures thus consist of multiple
units. There is a special unit, called rooT, which is used to store the input of the
construction application process, i.e. the form in comprehension or the meaning in
production. Constructions, on the other hand, are separated into pre-condition units
and post-condition units. The pre-condition units are further split in a form side and a
meaning side. This facilitates bidirectional processing using the same constructions.

Constructional language processing is nearly identical for both language compre-
hension and production. In general, constructions will check their pre-conditions with
the transient structure and, if they are met, expand the transient structure with new in-
formation. In comprehension, a construction can apply whenever its pre-conditions
on the form side are met. In particular, this means that all features on the form sides
of the construction precondition units need to be found in some units in the tran-
sient structure and match with those features. When a construction applies in com-
prehension, it merges its post-condition units, as well as its pre-condition units from
the meaning side into the transient structure. Similarly, in production, the meaning
sides of the pre-conditions of the construction should be met in the transient struc-
ture. When this is the case, the construction can merge its post-conditions, as well
as its pre-conditions from the form side into the transient structure. The match and
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merge operations are unification-based operations (Steels & De Beule 2006). Figure
2 illustrates this process schematically in the comprehension direction.

x transient-structure-2
transient-structure-1

unit-1

unit-1

feature-1:
value-1
feature-2:
?variable-2
feature-3;
value-3

—>
cxn-application

feature-1
value-1

2unit

2unit feature-2:

o variable-2
feature-3: i
value-3

feature-1
?variable-1

Figure 2: Schematic overview of a single construction application in comprehension. The features
on the form side of the construction’s pre-condition units match with some features in the transient
structure (in red). The construction can apply and merges its post-conditions and pre-conditions on
the meaning side into the transient structure (in green).

4 Character-based form representation

The novel methodology we introduce here for representing linguistic forms in com-
putational construction grammars is based on sequences of characters. This new rep-
resentation removes the need for a pre-segmentation step. Along with its accom-
panying processing and learning mechanisms, it thereby enables linguistic forms of
varying degrees of granularity to be represented and processed in the same analysis,
in turn closing the gap between the theory of construction grammar and its compu-
tational operationalisation in FCG. The main benefit of this representation thus lies
in its flexibility, both for grammar engineers operationalising a linguistic analysis in
FCG and for the automatic learning of constructions. In the following sections, we
introduce the character-based form representation (Section 4.1) and how it is used
for constructional language processing (Section 4.2) and learning (Section 4.3). We
demonstrate its flexibility by providing several examples.

4.1 Representation

First and foremost, we need a way to represent linguistic forms such that they can
be processed through construction application in FCG. In this novel methodology,
linguistic forms are represented by one or more SEQUENCE predicates. A SEQUENCE
predicate consists of three parts: a sequence of characters, followed by its left and
right boundary. The boundaries represent the index of the leftmost and the rightmost
character of the sequence.

De-rendering an input utterance in comprehension is straightforward, as illustrated
in Figure 3. The initial transient structure obtained by de-rendering the utterance
John takes Jill for granted contains a single SEQUENCE predicate, containing the character
sequence [john takes jill for granted], with boundaries 0 and 27. Note that
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the boundaries indicate positions in between the characters of the sequence. Specifi-
cally, the index 0 denotes the left side of the initial J while the index 27 denotes the
right side of the final 4. As such, the entire sequence of characters may be annotated
with indexes as seen in Example 4.1. The seQUENCE predicates, however, only cap-
ture the leftmost and rightmost index. This convention for indexing and representing
boundaries allows to express adjacency between sequences of characters by making
their boundaries equal, which will be illustrated later on.

transient structure

root
form: {sequence("john takes jill for granted", 0, 27)}

Figure 3: Initial transient structure obtained by de-rendering the utterance John takes Jill for granted. De-
rendering yields a single SEQUENCE predicate containing the entire utterance and its boundary indexes.

Example 4.1.
[oj102hsny stearksegsip 1112113114115 16E17018T19 208212223024t o5€26d27]

4.2 Processing

To use the character-based form representation in constructional language processing,
we need to specify (i) how the form side of constructions can be matched with the
transient structure, (ii) how the RooT unit is updated when a construction effectively
matches and (iii) how constructions handle the adjacency of character sequences.

(i) Matching is achieved through the use of a straightforward regular expression
search that looks up the character sequence of the sEQUENCE predicate in the transient
structure. If it is found, the indices representing the position of the matched string are
returned and bound to the left and right boundary in the SEQUENCE predicate. (ii) After
the matching, the RooT unit is updated. Concretely, the matched string is removed
from the SEQUENCE predicate in the RooT in which it was found. The rooT is then
updated with one or more new SEQUENCE predicates with updated boundaries. (iii)
Adjacency is expressed by variable equality of the boundaries of different SEQUENCE
predicates.

We illustrate the processing mechanism using a construction and a transient struc-
ture that both contain one single SEQUENCE predicate. For example, consider the
JiL-cxn in Figure 4. Its pre-conditions on the form side contain a single predicate:
(SEQUENCE “JILL” :LEFT :RIGHT). Note that the ForM feature is annotated with +HANDLE-
REGEX-SEQUENCES+. This indicates a procedural attachment for this feature (see Van
Eecke 2018: p. 44 for an explanation on procedural attachment in FCG), meaning
that it will not be matched to the transient structure through regular unification (as
indicated in Section 3), but through the regular expression search as explained above.

We will now apply the JiLL-cxn from Figure 4 to the transient structure of Figure
3. The resulting transient structure is shown in Figure 5. Concretely, for this con-
struction to apply, the character sequence of the construction [jill] is looked up in
the character sequence of the RooT: [john takes jill for granted]. This search
returns the leftmost and rightmost index of the matching sub-string, in this case 11
and 15. These indexes are used to instantiate the boundaries *LEFT and :RIGHT of the
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jill-cxn (cxn 0.50) show attributes

jill-unit
syn-cat: - .
lex-class: 2jill-unit
proper-name © # meaning: {jill(?jill)}
referent: 7?jill < # form +handle-regex-sequences+
sequence-boundaries: {sequence("jill", ?left, ?right)}
left: ?left
right: ?right

Figure 4: The JiLL-cxN maps between the
form jill and the meaning in the form of the
predicate (iLL #iLL). The form contains a sin-
gle SEQUENCE predicate with the character se-
quence [jill].

transient structure

root
form: {sequence("john takes ", 0, 11),
sequence(" for granted”, 15, 27)}

jill-unit-1
meaning: {jill(?jill-1)}
O form: {sequence('jill", 11, 15)}
referent: ?jill-1
syn-cat:

lex-class: proper-name
sequence-boundaries:

left: 11

right: 15

Figure 5: The transient structure after the ap-
plication of the JiLL-cxN from Figure 4 applied
on the transient structure from Figure 8. The
root is updated and contains two discontinu-
ous SEQUENCE predicates obtained by remov-

ing the character sequence “ill” from the sk-
QUENCE predicate in the root in the initial tran-
sient structure.

SEQUENCE predicate of the JILL-CXN, as can be seen in the jiLL-UNIT-1 in Figure 5. The
SEQUENCE predicate of the ROOT has to be updated now that the jiLL-cxN has consumed
the character sequence [jill]. The updated ROOT can be seen in Figure 5. It now
contains two SEQUENCE predicates with updated boundaries. Note the spaces at the
end of [john takes ] and at the start of [ for granted] as these are treated as any
other character.

The processing of a larger pattern where boundaries are made equal is demon-
strated in Figure 6. The transient structure on the left contains two noun-phrase
units, one for [jill] and one for [john] and also the TAKES-UNIT-2 representing the
verb form [takes]. The rooT unit still contains two spaces from the input utterance,
as well as the character sequence [ for granted]. In all units, the sequence bound-
aries are instantiated with their indexes. On the bottom of the figure, there is the
X-TAKES-Y-FOR-GRANTED-CXN. This construction matches on some noun phrase for
the X slot (;x-uNIT), on some verb with lemma ‘take’ (;vErB-UNIT), on another noun
phrase for the Y slot (;y-uniT), on the fixed character sequence [ for granted] in
the *FOR-GRANTED-UNIT and on two spaces in the :cLAUSE-UNIT. The SEQUENCE predi-
cates of the construction and their matching SEQUENCE predicates in the RooT of the
transient structure are highlighted in the same colour. The X-TAKES-Y-FOR-GRANTED-
cxN handles word order by making boundary variables of SEQUENCE predicates equal.
Specifically, the left boundary of [ for granted] is the same as the right boundary
for the Y slot, indicated with the variable :ricuT-Y. This means that the Y slot should
immediately precede the character sequence [ for granted]. Similarly, the first
space (highlighted in green) should immediately follow the X slot (;RIGHT-X) and im-
mediately be followed by the verb (;LEFT-VERB). Finally, the second space (highlighted
in yellow) should immediately follow the verb (:RicHT-VERB) and precede the Y slot
(;LEFT-Y). All of these conditions are indeed satisfied when we consult the instantiated
boundaries in the transient structure on the left. Hence, the construction can apply,
resulting in the transient structure on the right, which has now consumed all charac-
ters from the rRooOT and attributes the meaning (DOES-NOT-VALUE :JOHN-6 3ILL-3) to the
utterance John takes Jill for granted. Note that in the case of a construction containing
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transient structure

root

form: {sequence(" ", 4, 5)
sequen 10, 11),

sequence(" for granted", 15, 27)}

noun-phrase-unit-3

john-unit-4

syn-cat:

phrase-type: noun-phrase
sequence-boundaries:

left: O

right: 4
referent: ?john-6
subunits: {john-unit-4}

referent: ?john-6
sequence-boundaries:

left: 0

right: 4
syn-cat:

lex-class: proper-name
form: {sequence("john", 0, 4)}
meaning: {john(?john-6)}

noun-phrase-unit-2

jill-unit-1

cxn-application

syn-cat:

phrase-type: noun-phrase
sequence-boundaries:

left: 11

right: 15
referent: ?jill-3

subunits: {jill-unit-1}

referent: ?jill-3
sequence-boundaries:

left: 11

right: 15
syn-cat:

lex-class: proper-name
form: {sequence("jill", 11, 15)}

meaning: {jill(?jill-3)}

takes-unit-2

form: {sequence("takes", 5, 10)}
syn-cat:

lex-class: verb
lex-id: take
sequence-boundaries:

left: 5

right: 10

clause-unit-1

meaning:
{does-not-value(?john-6,
%ll-3)}
form:

{sequence(" ", 4, 5),
sequence(" ", 10, 11)}
syn-cat:

phrase-type: clause
referent: ?clause-8
subunits:
{noun-phrase-unit-3,
takes-unit-2,
noun-phrase-unit-2,
for-granted-unit-1}

?clause-unit

referent: ?clause
syn-cat:

subunits:

{?x-unit, ?verb-unit,
2y-unit,
?for-granted-unit}

phrase-type: clause

11

takes-unit-2

syn-cat:

lex-class: verb
lex-id: take
sequence-boundaries:

left: 5

right: 10

form: {sequence("takes", 5, 10)}

J for-granted-unit-1

| form: {sequence(" for granted", 15, 27)} |

jill-unit-1

noun-phrase-unit-2
referent: ?jill-3

subunits: {jill-unit-1}
sequence-boundaries:

[ left: 11 —
right: 15
syn-cat:

phrase-type:
noun-phrase

referent: ?jill-3
sequence-boundaries:
left: 11
right: 15
syn-cat:
lex-class:
proper-name
form:
{sequence("jill", 11,
15

meaning: {jill(?jill-3)}

john-unit-4

noun-phrase-unit-3
referent: ?john-6

sequence-boundaries:
left: ?left-x
right: ?right-x

subunits:
2x-unit {john-unit-4}
referent: ?x -boundaries:| |
syn-cat: left: O
phrase-type: noun-phrase right: 4
syn-cat:

?verb-unit

phrase-type:
noun-phrase

referent: ?john-6
sequence-boundaries:
left: 0
right: 4
syn-cat:
lex-class:
proper-name
form:
{sequence("john", 0,

meaning:
{john(?john-6)}

@

lex-id: take
syn-cat:
lex-class: verb
sequence-boundaries:
left: ?left-verb
right: ?right-verb

2y-unit

referent: ?y

syn-cat:

phrase-type: noun-phrase
sequence-boundaries:

left: 2left-y

right: ?right-y

2for-granted-unit

2

“?right-for-granted)}

# form +handle-regex-sequences+
{sequence(" for granted", ?right-y,

?clause-unit

# meaning: {does-not-value(?x, ?y)}

{sequence(’

# form +handle-regex-sequences+
", ?right-x, ?left-verb),
|__sequence(* *, ?right-verb, ?left-y)}

Figure 6: The application of the X-TAKE-Y-FOR-GRANTED-CXN. The construction applies on a transient
structure (shown on the left) resulting in an updated transient structure (shown on the right). Sequence
predicates in the form feature that match on the root are highlighted.
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multiple SEQUENCE predicates, the match is only successful whenever the instantiated
boundaries are non-overlapping.

Next to larger patterns, the character-based form representation can be easily used
for constructions that represent morphemes. This is illustrated using the Italian verbs
mangiare and guidare from the first conjugation in Figure 7. This figure shows the
sequence of transient structures (top) obtained by consecutively applying the con-
structions on the bottom. In the transient structures, only the ROOT unit is shown.
Similarly, in the constructions, only units containing SEQUENCE predicates are shown.
Starting with the verb form [guidavo] (imperfect form of to drive, i.e. I was driving),
first a construction for the stem [guid] applies, afterwards a construction for the st
person singular marker [o] applies and finally, a construction for the first conjugation
imperfect tense marker [av] applies. Each time, the SEQUENCE predicate in the rRooOT
is updated, until it is empty in the rightmost transient structure.

transient structure

transient structure
transient structure root
root form: {sequence('av", 4, 6)}
69\ root \ > @ form: {sequence(‘avo", 4, 7)} > ® )
| form: {sequence('guidavo’, 0, 7)} | ‘ ‘ 0 ‘ !. e a ‘
| suffix-unit-368 suffix-unit-368
guidare-base-stem (cxn 0.50) show attributes 0-1sg-morph (cxn 0.50) show attributes
Pstem-unit [2verb-unt |
el .
C lemma: guidare unit
— @ [ 2suffix-uni ——
g parent: ?verb-unit - < @' suffix-unit ‘ ?suffix-unit ‘
# form +handle-regex-sequences+ - -+ " "
(sequence("guid",g?\eﬂ, ??ight)} suffix- # form +handle-regex-sequences+ 2tam- ?tam-suffix-unit

unit {sequence("o", ?left-suffix, st

- °
?right-suffix)} unit

# form +handle-regex-sequences+
{sequence("av", ?right-stem,
2left-suffix)}

Figure 7: Application of several constructions to analyse the verb [guidavo]. The three constructions
that match on the form in the rooT are shown. They match on the stem ([guid]), the marker for 1st
person singular ([o]) and the marker for the first conjugation imperfect tense ([av]). Only units that
contain a SEQUENCE predicate are expanded, the others are collapsed.

In the above examples, we focused on comprehension. In production, the form
side is handled by merging SEQUENCE predicates with uninstantiated boundaries in
the corresponding units in the transient structure. In rendering, the final transient
structure is scanned for all SEQUENCE predicates and the character sequences of these
predicates are combined, taking into account the boundaries, to obtain a linguistic
utterance. For example, if the resulting transient structure contains the SEQUENCE
predicates (SEQUENCE “comPR” :L1 :R1), (SEQUENCE “AV” :R1 :R2) and (SEQUENCE “0” :R2
:R3), the rendering combines the strings in the predicates based on the variable equali-
ties and return the string “compravo”. In the case that not all SEQUENCE predicates are
sequential due to boundaries that are not made equal, the rendering will choose an
order.

4.3 Learning

In FCG, constructions can be learned from semantically annotated corpora by looking
for syntactico-semantic generalisations (Doumen et al. 2023, 2024). These are generali-
sations over form-meaning mappings that capture differences and similarities in both
the form and the meaning. This process is inspired by the way in which children



Schmalz, Verheyen, and Nevens 13

acquire language, namely through pattern finding mechanisms with which they find
generalisations in the linguistic input that they perceive (Tomasello 2003; Goldberg
2006; Behrens 2009). These claims are supported by empirical evidence (Tomasello
2003; Behrens 2009; Hartmann et al. 2021; Koch et al. 2022) as well as computa-
tional evidence (Steels 2004; Spranger 2017; Doumen et al. 2023, 2024).

The learning happens by processing the semantically annotated corpus in sequence.
Given a form-meaning pairing, the learning algorithm will first try to process it with
the already acquired constructions. If this fails, the learning algorithm makes new con-
structions by generalising over the observed form-meaning pairing and the acquired
constructions. The best generalisation, i.e. the one capturing the most similarities
in both form and meaning, is used. The type of utterances or speech acts observed
by the learning algorithm thus depend on the semantically annotated corpus. Cor-
pus entries may consist of well-formed sentences, e.g. in synthetic corpora such as
CLEVR (Johnson et al. 2017), or contain incomplete sentences and sentences with
disfluencies, e.g. in the transcribed corpora available via CHILDES (MacWhinney
1996).

Here, we introduce a novel algorithm for one aspect of the learning mechanisms of
Doumen et al. (2028, 2024 ), namely for finding generalisations on the form side using
the newly introduced sEQUENCE predicates. This removes the need for pre-segmenting
the form, also in construction learning experiments. The algorithm combines string
alignment (cf. Section 4.3.1) and pattern matching (cf. Section 4.3.2) in order to
compute differences and similarities given two sets of SEQUENCE predicates. Con-
cretely, we first compute a maximal alignment between the two character sequences.
From the aligned character sequences, we extract the generalisation through pattern
matching. At the end of this section, we demonstrate how this algorithm can be used
in learning constructions (cf. Section 4.3.3).

To introduce the generalisation algorithm, we work out the example of generalising
over (SEQUENCE “cOMPRAVO” :L1 :R1) and (SEQUENCE “GUIDAVO” :L2 :R2). The resulting
generalisation corresponds to the SEQUENCE predicate that captures the common char-
acters in both sequences, namely (SEQUENCE “Avo” :G1 :62). From the differences, the
SEQUENCE predicates (SEQUENCE “COMPR” :L1 :xJ) and (SEQUENCE “GuID” :L2 :x4) are con-
structed. In terms of syntactico-semantic generalisation, it is thus possible to learn a
construction that captures the suffix -avo. This construction has a single slot, which
can be filled by constructions that capture the verb stems compr and guid.

In what follows, we will refer to the first input predicate as S; and to the second
input predicate as S;. For clarity reasons, we illustrate the algorithm by generalising
over two sets containing just a single predicate. However, the algorithm can be applied
in a similar way to generalise over sets of multiple SEQUENCE predicates.

4.3.1 String alignment

The first step in the generalisation algorithm is to find a maximal alignment between
two sequences of characters. Here, we use the most canonical sequence alignment
algorithm, being the Needleman-Wunsch algorithm (Needleman & Wunsch 1970).

Other sequence alignment algorithms could also be used.
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Best alignment score: -2

(o]
-8
_ -8

Aligned sequences Scores

8 + Match +1
COMPRAVO -8 * Mismatch -1
GUID-AVO + Gap -1

-8

-6

-4

Figure 8: Optimal sequence alignment between the sequences [compravo] and [guidavo] obtained
with the Needleman-Wunsch algorithm. The optimal alignment of the two sequences is determined by
computing all alignments of all subsequences and combining the optimal results (highlighted cells). The
optimal alignment consists of mismatches between [comp] and [guid], a gap for the r of [compravo],
and a match for [avo]. Using the scoring scheme on the right, this yields an alignment score of -2.

The result of the sequence alignment algorithm for aligning the sequences [compravo]
and [guidavo] is illustrated in Figure 8. The optimal alignment is shown on the left
side of the figure. This alignment has a mismatch between the subsequences [comp]
and [guid], a gap for the character r of [compravo] and a match for the subse-
quences [avo]. The scores for a match, a mismatch and a gap are set to default
values of 1, -1 and -1, respectively. The alignment score of -2 is obtained by adding
1 for every matching character and subtracting 1 for every mismatched character and
for every gap. Every other alignment has a worse alignment score. In other words,
this alignment maximises the number of matching characters.

The aligned sequences are converted back to SEQUENCE predicates. As an interme-
diate step, one SEQUENCE predicate per character is used. This is necessary for the
pattern matching step which will follow. For the boundaries of the sEQUENCE pred-
icates, we re-use the boundary variables of the original inputs and introduce new
variables where necessary. Here, as a convention, we use new variables with :x for
the first input S; and new variables with @y for the second input S;. Concretely, for
the aligned sequences [compravo] and [guid_avo], this means that we now have the
following sets of aligned sequences predicates:

(SEQUENCE “C” ?L1 x1) — (SEQUENCE “G” :L2 v1)

[13

(SEQUENCE “0” 2x1 X2) — (SEQUENCE “U” 2v1 :v2)
(SEQUENCE “M” X2 X3) — (SEQUENCE “T” ?Y2 :Y3)

(SEQUENCE “0” X7 R1) — (SEQUENCE “0” Y7 :R2)

4.3.2 Pattern Matching

The pattern matching part of the algorithm orderly traverses the aligned SEQUENCE
predicates, compares each of the aligned characters and divides the predicates into
three groups:

1. The generalisation - the SEQUENCE predicates that S; and Sy have in common
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2. The S; delta - the SEQUENCE predicates of S; that are not part of the generalisa-
tion
3. The S5 delta - the SEQUENCE predicates of Sy that are not part of the generalisa-
tion
Whenever two aligned characters are the same, one of the two SEQUENCE predicates
is added to the generalisation. Conversely, when the characters are different, the
SEQUENCE predicates are added to the S; delta and the S delta, respectively. Gap
characters are never added to the generalisation nor to the deltas. Predicates that
are added to the generalisation are again given new boundary variables. However, a
list of variable mappings is kept for both S; and Sy such that the new variables in
the generalisation can be translated back to the original variables in S; and S;. This
will be necessary when using the output of the generalisation algorithm for learning
constructions. Finally, when the SEQUENCE predicates are divided into groups, the ad-
jacent single-character SEQUENCE predicates are merged into SEQUENCE predicates with
multiple character sequences. Two predicates are adjacent when the right boundary
variable of one predicate is the same as the left boundary variable of the other predi-
cate or vice-versa.

The complete output of the generalisation algorithm, including the generalisation,
the deltas and the variable mappings, for the predicates (SEQUENCE “COMPRAVO” :L1 :R1)
and (SEQUENCE “GUIDAVO” 212 :R2) consists of the following parts:

e Generalisation: (SEQUENCE “Av0” :G1 :G2)
S; delta: (SEQUENCE “compRr” :L1 X))

Sy delta: (SEQUENCE “GuID” :L2 ?v4)

e 51 mappings: x5 < :Gl, R1 <> 62

e S5 mappings: v4 <> :G1, :R2 < :G2

Pseudocode for the complete generalisation algorithm, including both the string
alignment and pattern matching phases, is provided in Algorithm 1.

4.3.3 Learning Constructions

The generalisation, the deltas and the variable mappings obtained through pattern
matching can now be used for building constructions from the syntactico-semantic
generalisation. This is illustrated in Figure 9, continuing the example of generalising
over guidavo and compravo. On the semantic side, the verb forms are provided with
a meaning representation that captures the activity of the verb (i.e. drive and buy),
the person (i.e. me to indicate first person) and the imperfect tense (i.e. the event
is simultaneous with some time point in the past). These meanings are represented
through the predicates (ACTIVITY *VERB ?EVENT), (PERSON *PERSON ?AGENT), (SIMULTANEOUS
*TIME-POINT *EVENT) and (TIME-POINT ?RECALLED-POINT *TIME-POINT).

The result of the syntactico-semantic generalisation is shown on the bottom half of
Figure 9. Concretely, the similarities on the form side and the meaning side result
in the Avo-cxn, capturing the suffix -avo mapped to the meaning of some event that
is viewed from the 1st person and occurs simultaneously with some recalled time
point in the past. The differences on the form side and the meaning side result in the
cub-cxN and the comPr-cxN. The former associates the stem guid with the agent of
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Algorithm 1 Algorithm for the generalisation of two sequence predicates S; and Sy

function GENERALISE-SEQUENCES(S7, S5)

if S{ = _ then
. push (sequence S§ S S3?) to 6.9,
else if S5 = _ then
 push (sequence S¢ S ST°) to 6.5;
else if S{ = S5 then
. push (sequence S§ S S°) to Gen
else

push (sequence S§ S S1%) to 55,
B L push (sequence S5 S Si%) to 5.5,
Gen < merge-adjacent-sequences(Gen)
051 < merge-adjacent-sequences(4.5;)
0S5y < merge-adjacent-sequences(4.55)
push (Gen,§S1,05;) to R

_ return R

> Compute all alignments A using Needleman-Wunsch <
A + Sequence-Alignment (S, S5)
R+ 0 > Resulting generalisations R
forall a € A do
Gen, 651,08, + 0
for (S5¢, 5%, S1%), (S5, S, S1%) € a do
> S€ are characters from the alignment <
> S and S™ are left and right boundaries from the alignment <

> Gap in Sy
> Gap in Sy
> Match

> Mismatch
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compravo-cxn-1 show description

?holophrastic-unit-1
# meaning:
{activity(buy, ?event-1),
buyer(?event-1, ?agent-1),
%) o person(me, ?agent-1),
4—| simultaneous(?time-point-1, ?event-1),
time-point(recalled-point, ?time-point-1),
event-perspective(unbound, ?event-1)}
# form +handle-regex-sequences+
{sequence("compravo", ?I11-1, ?r1-1)}

(sequence “guidavo” ?12 ?r2)

™

{activity(drive, ?event-2),
driver(?event-2, agent-2),

person(me, ?agent-2),
simultaneous(?time-point-2, ?event-2),
time-point(recalled-point, ?time-point-2),
event-perspective(unbound, ?event-2))

guid-cxn-1 show description
avo-cxn-1 show description

Ailler-unit-1 compr-
?parent-unit-1 Tcategory: | ?iller-unit-1 filler-cat-1
# meaning: guid-filler-cat-1 # meaning:
{person(me, ?I-1), form-args: o {activity(drive, ?event-3),
simultaneous(?m-1, ?n-1), [?1b-6] < driver(?event-3, ?agent-3)}
time-point(recalled-point, ?m-1), meaning-args: # form +handle-regex-sequences+
event-perspective(unbound, ?n-1)} [?event-3, {sequence("guid", ?12-1, ?Ib-6)}
“?parent-unit- # form +handle-regex-sequences+ ?agent-3]
1 o {sequence("avo", ?gb-1, 2gb-4)} b avo-slot-cat-1
ey T +
{?slot-unit-1} ?slot-unit-1
category: avo-slot-cat-1 ———
form-args: [?gb-1] Z::I:'Ourf“ 3 2Aill it-3
meaning-args: [?n-1, ?I-1] corr?pr—ryf;ller-cat-i # me_al_ving:
category: avo-slot-cat-1 e N © {activity(buy, ?event-1), o
gory: @ form-args: [?1b-5] buyer(?event-1, 2agent-1)} guid-filler-
form-args: [?gb-1] meaning-args:
meaning-args: [2n-1, 71-1] [event-1, # form +han“dle-reg‘e);-sequvences+ cat-1
2agent-1] {sequence("compr", ?I1-1, ?Ib-5)}

Figure 9: Syntactico-semantic generalisation of guidavo and compravo. The avo-cxN maps between
the suffix avo and the meaning of some event from the first person perspective in the imperfect tense.
The cuib-cxN and compr-cxXN map the verb stems to their respective types of events, i.e. driving and
buying.

a driving event, while the latter associates the stem compr with the agent of a buying
event. Finally, slot-and-filler relations between the constructions are also learned, such
that both the cump-cxN and the compr-cxN can fill the slot provided by the Avo-cxn.

With this syntactico-semantic generalisation, the Avo-cxnN captures both the person
and the tense in the first conjugation. Subsequent generalisations with other verb
forms will allow to learn even more fine-grained constructions that separate the first
conjugation tense suflix (here av) from the person suflix (here o).

With the examples throughout this section, we aim to show the flexibility of the new
representation of the form side of constructions based on character sequences. Con-
cretely, by working with raw character sequences instead of using a specific level of
segmentation, it becomes easier to combine constructions of varying levels of granu-
larity (in terms of the form). Throughout the examples, we have seen how character
sequences could be used to capture words (specifically, the jiLL-cxN), a larger pat-
tern with a multi-word segment (specifically, the X-TAKES-Y-FOR-GRANTED-CXN), and
morphology (specifically constructions for the Italian verb stem and suffixes). By ex-
tending the learning of constructions through syntactico-semantic generalisations with
the new SEQUENCE predicates and algorithms for generalising over them, it becomes
possible to automatically learn distinctions on different levels of granularity.

While the examples presented in this section were chosen for didactic and illustra-
tive purposes, we highlight that the processing of character sequences as well as the
generalisation over character sequences is fully operational and integrated in the open-
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source Fluid Construction Grammar formalism (see https://fcg-net.org). The
presented algorithms do not rely on any other information apart from the assump-
tion that the input utterance is captured as a sequence of characters. For example,
sentence boundaries have no effect as spaces and punctuation marks are treated like
any other character.

5 Discussion

By introducing character sequences, we remove the distinction between the segmen-
tation and processing of linguistic forms, which leads to a range of positive implica-
tions. In the following paragraphs, we discuss (i) practical advantages, (ii) the improved
flexibility for operationalising constructionist analyses and for learning construction
grammars, (iii) how this closes the gap between construction grammar theory and
computational models, and (iv) the facilitation of future experiments on the learning,
emergence and evolution of languages.

From a practical perspective, removing the pre-segmentation process makes the
constructional analysis independent from the quality and the specificity of this pro-
cess. Indeed, errors in the segmentation process can no longer percolate through-
out the analysis. Moreover, the analysis is no longer limited to one specific level of
segmentation, which often does not suffice for operationalising constructional analy-
ses. This was illustrated through the inability to combine for example morphological
patterns (e.g. verb-stem + suffix constructions) with word-order patterns (e.g. X-
take-Y-for-granted-cxn). While these constructions could combine in theory, on a
practical level, this is hindered by the choice of pre-segmentation algorithm. Specif-
ically, a segmentation based on whitespaces would not separate the verb stem from
the suffix, while a morphology-based segmentation would not capture for granted as a
single segment. A key contribution of the character-based form representation is that
it eliminates the need to specify these distinctions. In general, such segmentation-
free representations bear the promise of being more language independent (Petrov
et al. 2023). It is therefore argued that they provide a better fit for morphologically
complex and low-resource languages (Kudo & Richardson 2018; Oudah et al. 2019).

The segmentation-free representation of linguistic forms offers greater flexibility
for operationalising constructionist analyses and for learning computational construc-
tion grammars. Indeed, this approach sets a grammar engineer performing a linguis-
tic analysis free from having to determine the level of segmentation they will use at
the start of the analysis. Instead, the novel representation allows to unrestrictedly
combine constructions of varying degree of granularity, ranging from morphological
patterns to larger word-order patterns and abstract patterns. The same holds true for
the learning of computational construction grammars. Before, the most fine-grained
distinctions that could be learned were determined by the pre-segmentation process.
Now, discovering the segmentation becomes part of the learning process. We envi-
sion that through this approach, a system can learn constructions of any size and level
of abstraction (i.e. morphemes, words, chunks, grammatical patterns, ...), as long as
they map between some kind of form and meaning and they can be used success-
fully in communication. In other words, meaningful segmentation emerges out of
the observation of speech acts and the syntactico-semantic patterns detected therein.
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This increased flexibility can be particularly useful for operationalising constructionist
analyses or learning in morphologically rich languages, the latter of which has been
proven to be an open challenge (Schmalz & Cornillie 2022).

From a theoretical perspective, removing the pre-segmentation process closes a
gap that existed between construction grammar theory and its computational opera-
tionalisation. Indeed, this allows us to more effectively operationalise the notion of
“constructions all the way down” (Goldberg 2006: p. 18) as the constructions are no
longer constrained by the level of segmentation. Now, constructions spanning the
entire continuum can be represented and processed. Moreover, adapting the gener-
alisation algorithm to work directly character sequences also brings the learning of
construction grammars closer to its theoretical foundations in first language acquisi-
tion, given that children are able to learn language from continuous, unsegmented

input (Ambridge & Lieven 2011: p. 47).

The algorithms introduced in this paper facilitate a range of new constructional
analyses, experiments on construction grammar learning, and studies on the emer-
gence and evolution of language. Specifically, computational constructional analyses
can move from focusing on modelling either morphological linguistic phenomena
(such as van Trijp 2011b, Gerasymova 2012 and Beuls 2012) or syntactic linguis-
tic phenomena (such as Riadulescu & Beuls 2016, van Trijp 2011a and Van Eecke
2017) to analyses that more easily combine both. In terms of learning construction
grammars, we aim to facilitate further experiments that contribute to the growing
body of literature that provides empirical and computational evidence (Lieven et al.
2003; Tomasello 2003; Steels 2004; Behrens 2009; Spranger 2017; Hartmann et al.
2021; Koch et al. 2022; Nevens et al. 2022; Doumen et al. 2023, 2024 ) for the the-
ory according to which children learn language in a constructivist and usage-based
way (Lieven et al. 1997; Tomasello 2003, 2006; Ambridge & Lieven 2015; Behrens
2021). Crucially, it now becomes possible to investigate the interplay between seg-
menting the continuous input and pairing the obtained segments with some sort of
meaning in order to acquire constructions. Finally, the novel algorithms could be
used to facilitate experiments on the emergence and evolution of language. Such
experiments have so far focused on smaller morpho-syntactical phenomena, such as
agreement systems (Beuls & Steels 2018), case grammar (van Trijp 2016), definite
articles (van Trijp 2013b) and inflection (Pijpops et al. 2015), or on larger syntactic
structures, such as phrase structure (Steels & Garcia Casademont 2015) and word
order (Van Eecke 2018). Future work could focus on more general experiments that
investigate how these different aspects of linguistic analysis can emerge and evolve
together. Indeed, as stated by Dunn (2024: p. 97), “we would expect a symmetry
between the emergence of constructions in syntactic structure and in morphological
structure”.

6 Conclusion

In this paper, we have introduced two novel algorithms that allow computational con-
struction grammars to operate on unsegmented linguistic forms. The introduction of
these algorithms eliminates the traditional separation between segmenting linguistic
forms and processing them. Both algorithms rely on representing the form side of
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constructions as raw character sequences. The first algorithm allows constructional
language processing to accommodate such character sequences through the use of
regular expressions (cf. Section 4.2). The second algorithm extends the learning of
computational construction grammars introduced by Nevens et al. (2022), Doumen
et al. (2023) and Doumen et al. (2024) with these new representation and processing
mechanisms. Specifically, we have designed a two-step process in which the character
sequences are first aligned using the Needleman-Wunsch algorithm, followed by the
computation of a generalisation using a pattern matching process (cf. Section 4.3).

The algorithms introduced in this paper have been fully implemented and inte-
grated in the open-source implementation of Fluid Construction Grammar as well
as in the FCG Editor (see https://fcg-net.org). We have illustrated them and
discussed their advantages through a range of examples. The incorporation of these
novel algorithms has allowed us to remove the separation between segmentation and
processing. Apart from practical advantages, such as being more language inde-
pendent, this offers greater flexibility to construction grammarians for operational-
ising constructionist analyses and for learning computational construction grammars.
Moreover, this brings the computational operationalisation of construction grammars
closer to its theoretical foundations and paves the way towards more advanced exper-
iments on the learning, emergence and evolution of construction grammars.
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